Identifying police killings from news text with distant supervision

Brendan O'Connor College of Information and Computer Sciences University of Massachusetts Amherst <u>http://brenocon.com</u>

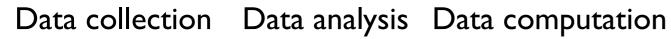
Talk at NYU Center for Data Science, 4/27/17

Joint work with: Katherine Keith, Abram Handler, Michael Pinkham, Cara Magliozzi, Joshua McDuffie

Computational Social Science

Computational Social Science

Official social data



100 BCE 1829 1890

1900

Computational Social Science

Data collection Data analysis Data computation

100 BCE

1829

Semi-structured social data

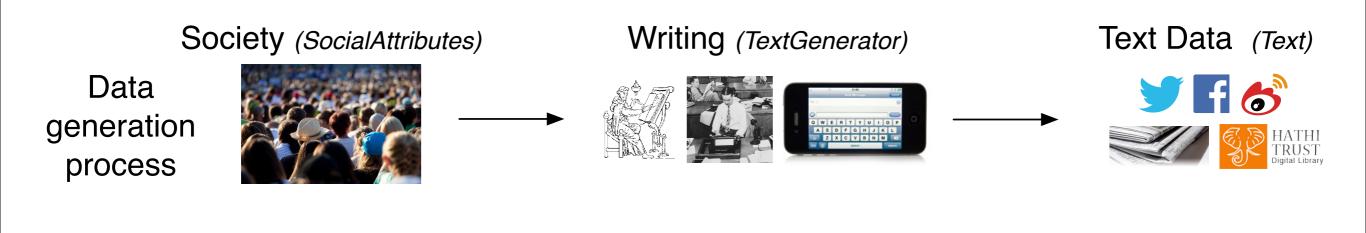
Digitized behavior

Billions of users, messages/day

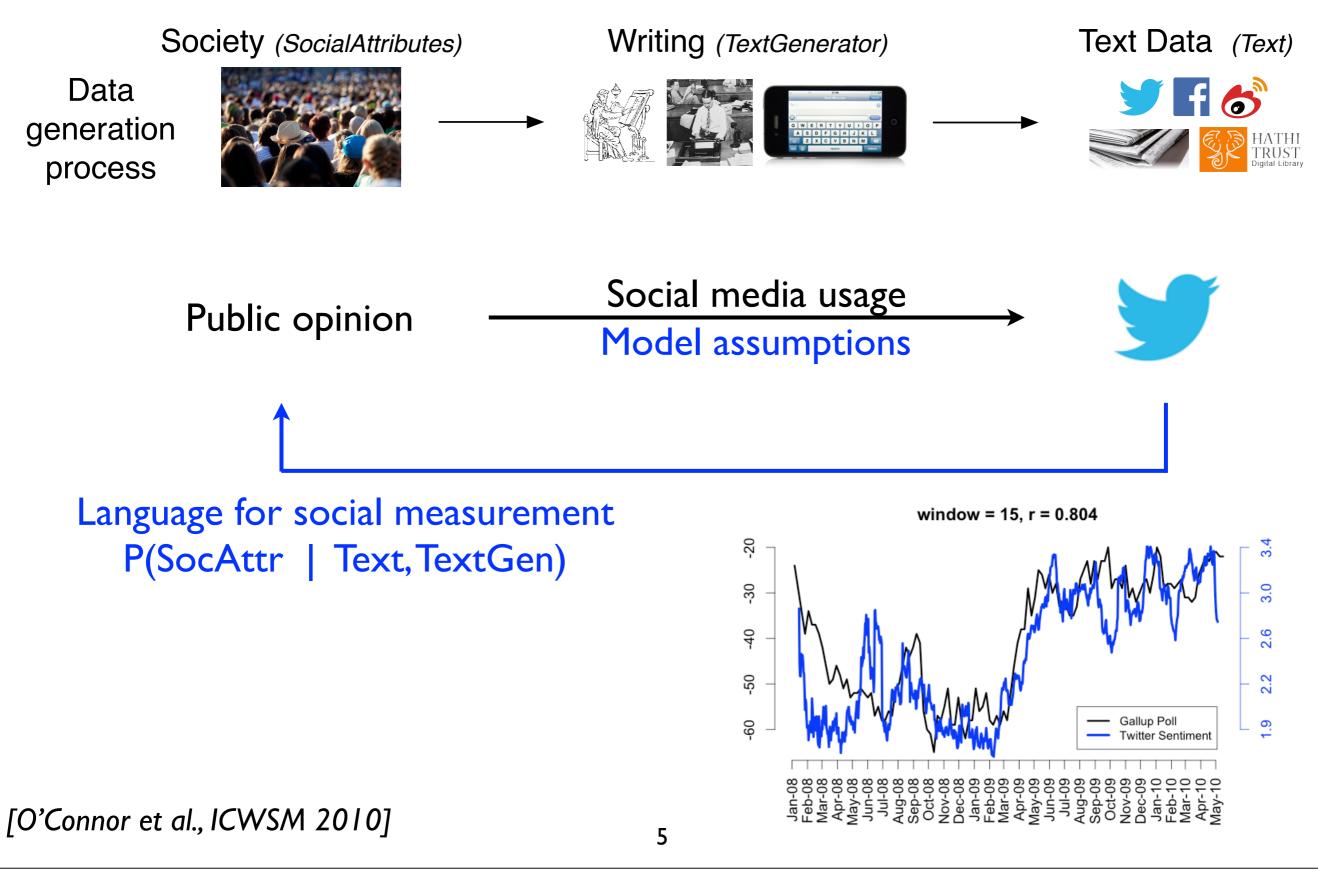
Digitized news Thousands of articles/day

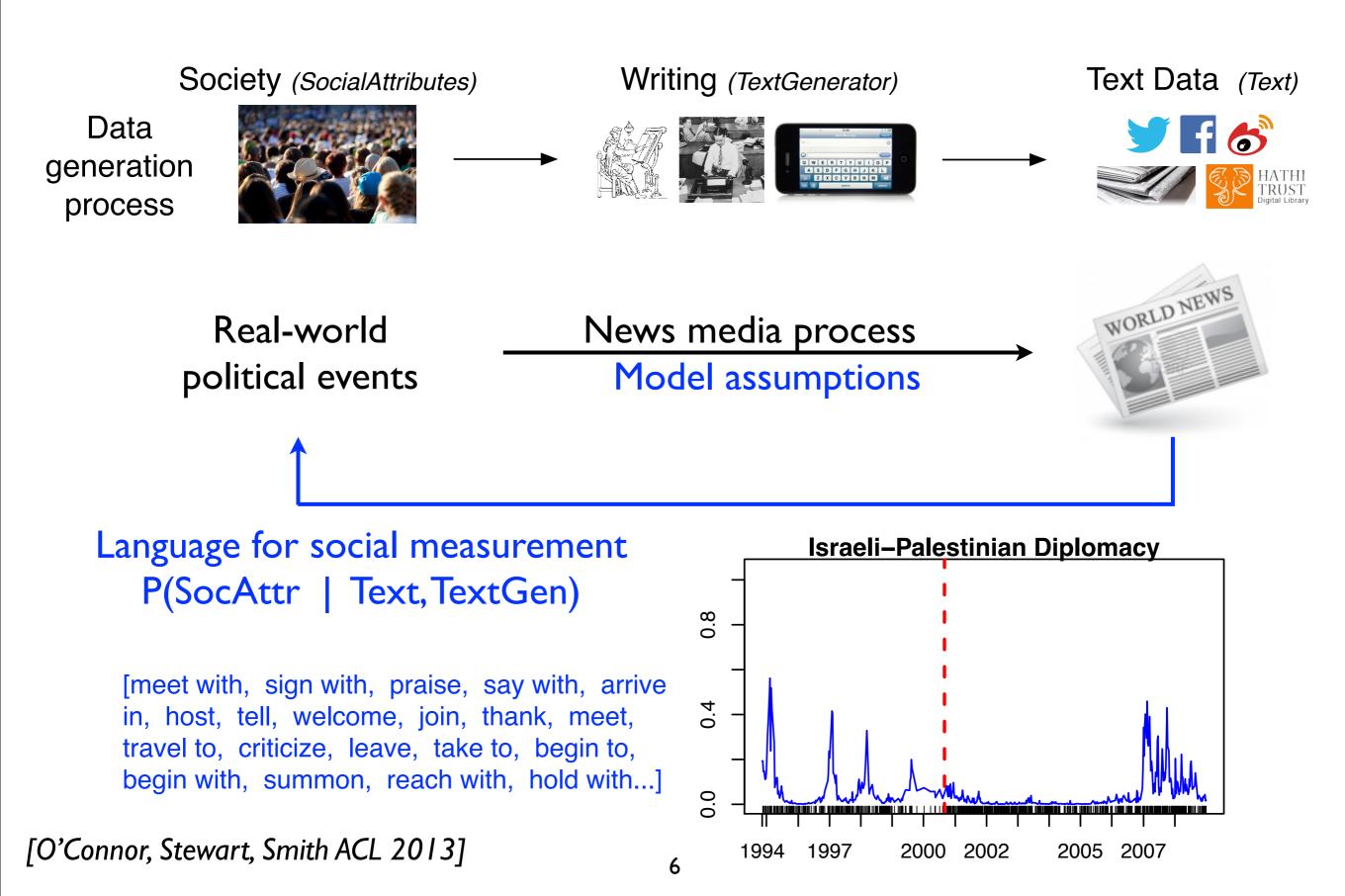
Digitized archives Millions of books/century

2000



Language for social measurement P(SocAttr | Text,TextGen)





Society (SocialAttributes)

Data generation process

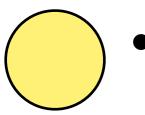
Writing (TextGenerator)

Text Data (Text)

<u>What to analyze:</u>

Social phenomena in textual datasets

- Dialects in social media language
- Events in international relations

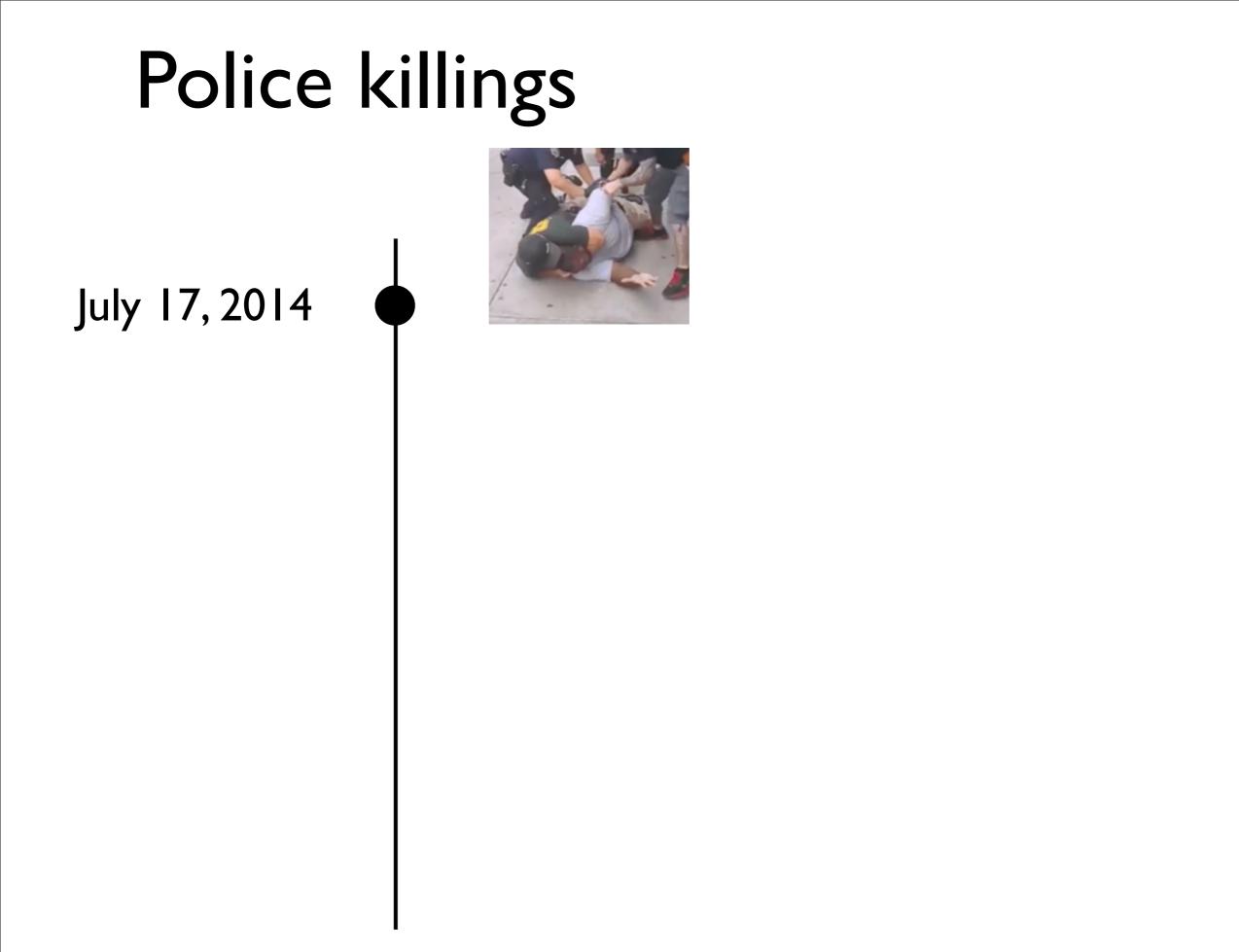


 Identifying police killings in news

How to analyze:

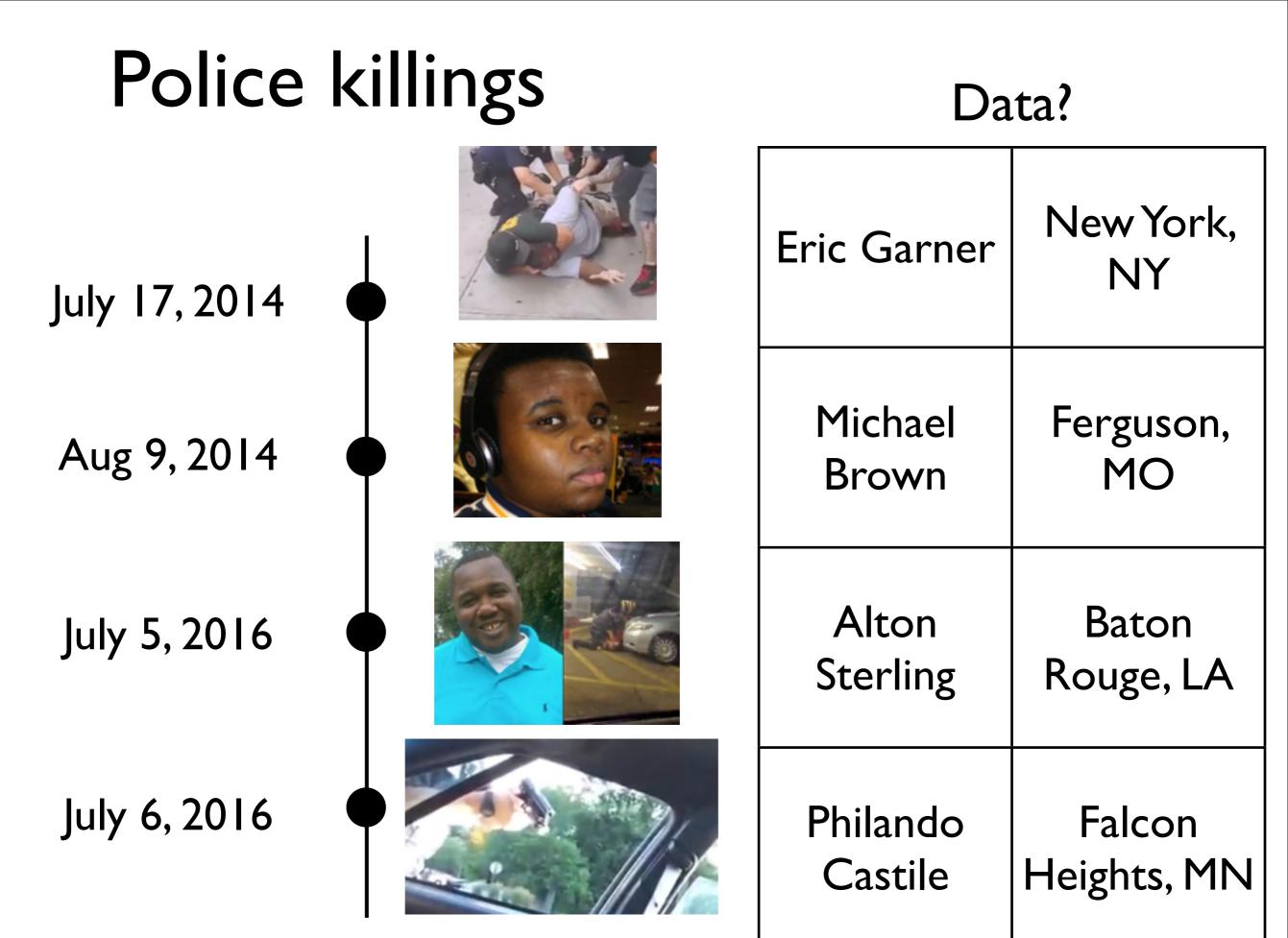
NLP capabilities we need to do these better

- Part of speech tagging
- Syntactic, semantic parsing
- Event extraction



July 17, 2014

Aug 9, 2014



Data?

Eric Garner	New York, NY
Michael	Ferguson,
Brown	MO
Alton	Baton
Sterling	Rouge, LA
Philando	Falcon
Castile	Heights, MN

• Are there more or fewer fatalities than last year?

Data?		
Eric Garner	New York, NY	
Michael	Ferguson,	
Brown	MO	
Alton	Baton	
Sterling	Rouge, LA	
Philando	Falcon	
Castile	Heights, MN	

- Are there more or fewer fatalities than last year?
- Is there racial disparity/ discrimination?

Data?		
Eric Garner	New York, NY	
Michael	Ferguson,	
Brown	MO	
Alton	Baton	
Sterling	Rouge, LA	
Philando	Falcon	
Castile	Heights, MN	

- Are there more or fewer fatalities than last year?
- Is there racial disparity/ discrimination?
- Which police departments are better or worse? What policing strategies are most effective or safe?

Data?		
Eric Garner	New York, NY	
Michael	Ferguson,	
Brown	MO	
Alton	Baton	
Sterling	Rouge, LA	
Philando	Falcon	
Castile	Heights, MN	

- Are there more or fewer fatalities than last year?
- Is there racial disparity/ discrimination?
- Which police departments are better or worse? What policing strategies are most effective or safe?
- Need good data for the public interest and social science / policy making

Data?		
Eric Garner	New York, NY	
Michael	Ferguson,	
Brown	MO	
Alton	Baton	
Sterling	Rouge, LA	
Philando	Falcon	
Castile	Heights, MN	

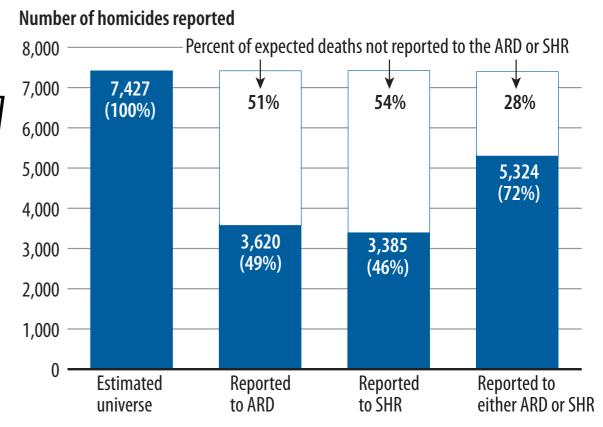
 Washington Post, Oct. 16, 2016: "Americans actually have no idea" about how often police use force because nobody has collected enough data.

 Washington Post, Oct. 16, 2016: "Americans actually have no idea" about how often police use force because nobody has collected enough data.

In a speech to police chiefs on Oct. 16, FBI Director James Comey said videos of police shootings have given the public an inaccurate impression that there's an epidemic of police violence against black people. (Editor's note: This video contains breaks and a facial-recognition square from the source.) (Youtube/fbi)

- Unreliable partial compliance between local agencies and federal government
 - Massively undercounts deaths [Banks et al. 2015 (BJS/DOJ), Lum and Ball 2015 (HRDAG, external)]
- Uncertain future for DOJ programs?
- [Compare: National Justice Database's voluntary participation approach; Center for Policing Equity, John Jay College]

Estimated number of law enforcement homicides and percent not reported, by data source, 2003–2009 and 2011



Alternative: news media reports

- Populate a database by manually reading news articles (filtered by keyword search)
 - FatalEncounters.org, KilledByPolice.net, The Guardian, Washington Post...
 - FE: volunteers have read 2M articles or ledes (!)
 - Augment with open records requests
 - BJS, Dec. 2016: media reports double the count compared to previous government collection efforts

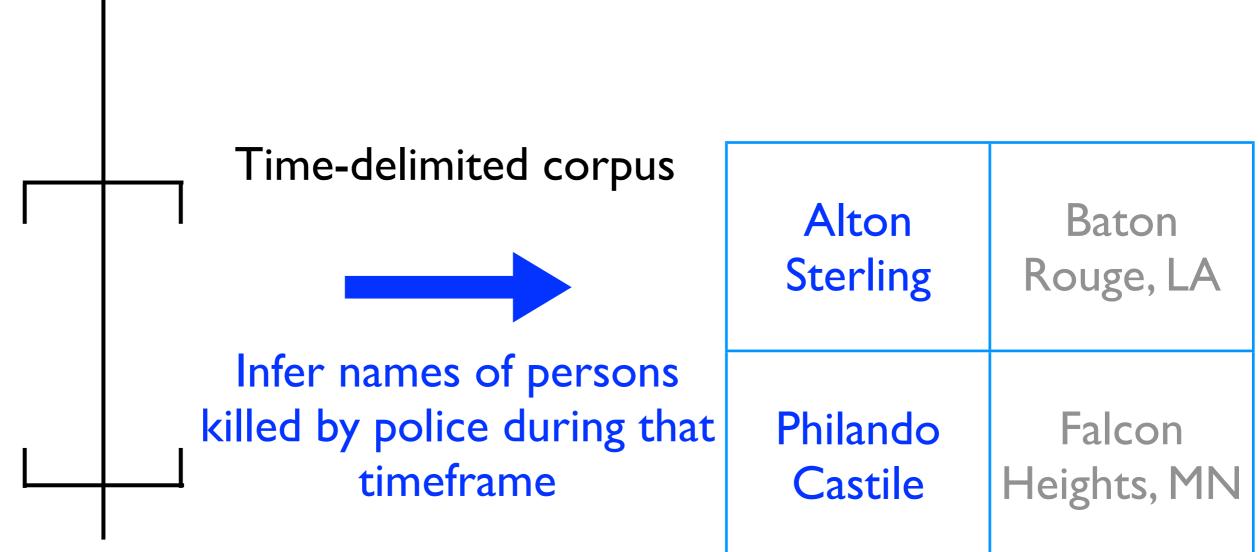
Computational approach

- Goal: extract fatality records from a news corpus
 - Off-the-shelf event extractors work poorly (ACE, FrameNet training/ontologies)
 - Instead, train models for this problem (distant supervision+EM)
- NLP and social analysis
 - Concrete, real-world tasks useful testbed for NLP research
 - Can NLP offer something useful for important tasks?
- Public data and government accountability

Computational approach

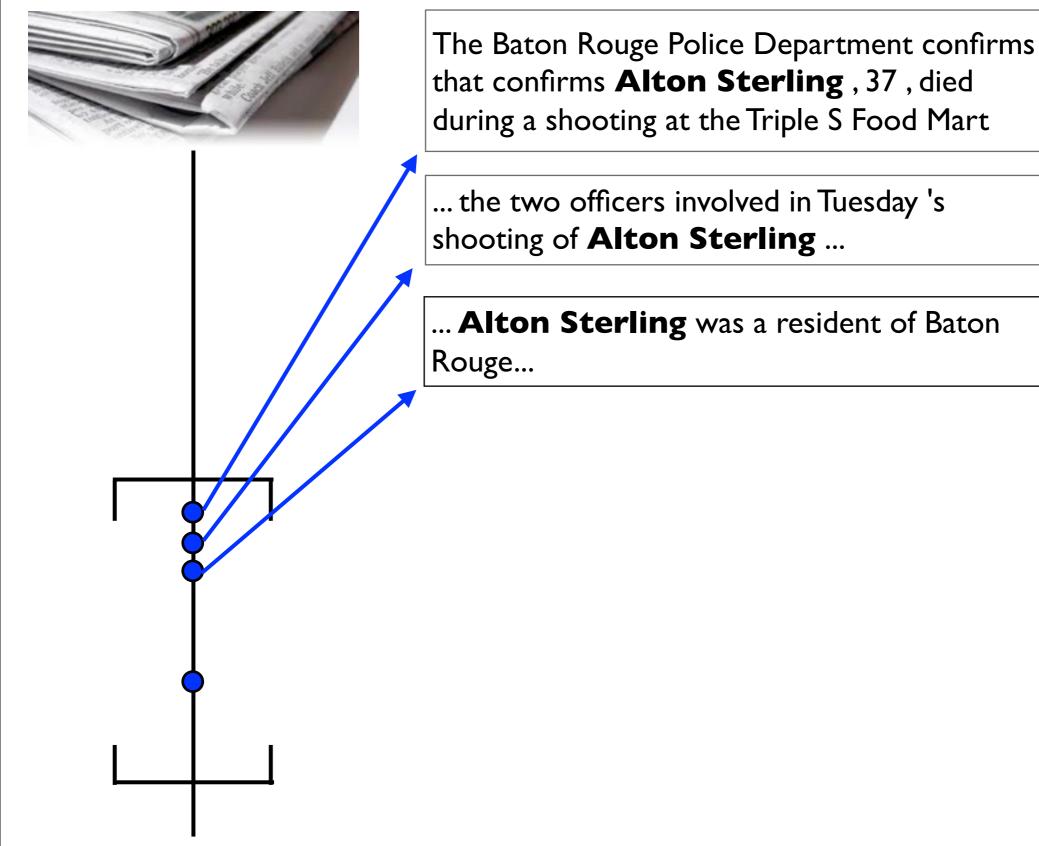
July 17, 2014	Eric Garner	New York, NY
• Aug 9, 2014	Michael Brown	Ferguson, MO
July 5, 2016	Alton Sterling	Baton Rouge, LA
 July 6, 2016 	Philando Castile	Falcon Heights, MN

Task: Database Population



Task: Database Update

	Eric Garner	New York, NY
Historical data (Distant supervision)	Michael Brown	Ferguson, MO
	Alton Sterling	Baton Rouge, LA
Testing/Runtime	Philando Castile	Falcon Heights, MN



The Baton Rouge Police Department confirms that confirms **Alton Sterling** , 37 , died during a shooting at the Triple S Food Mart

... the two officers involved in Tuesday 's shooting of **Alton Sterling** ...

... **Alton Sterling** was a resident of Baton Rouge...

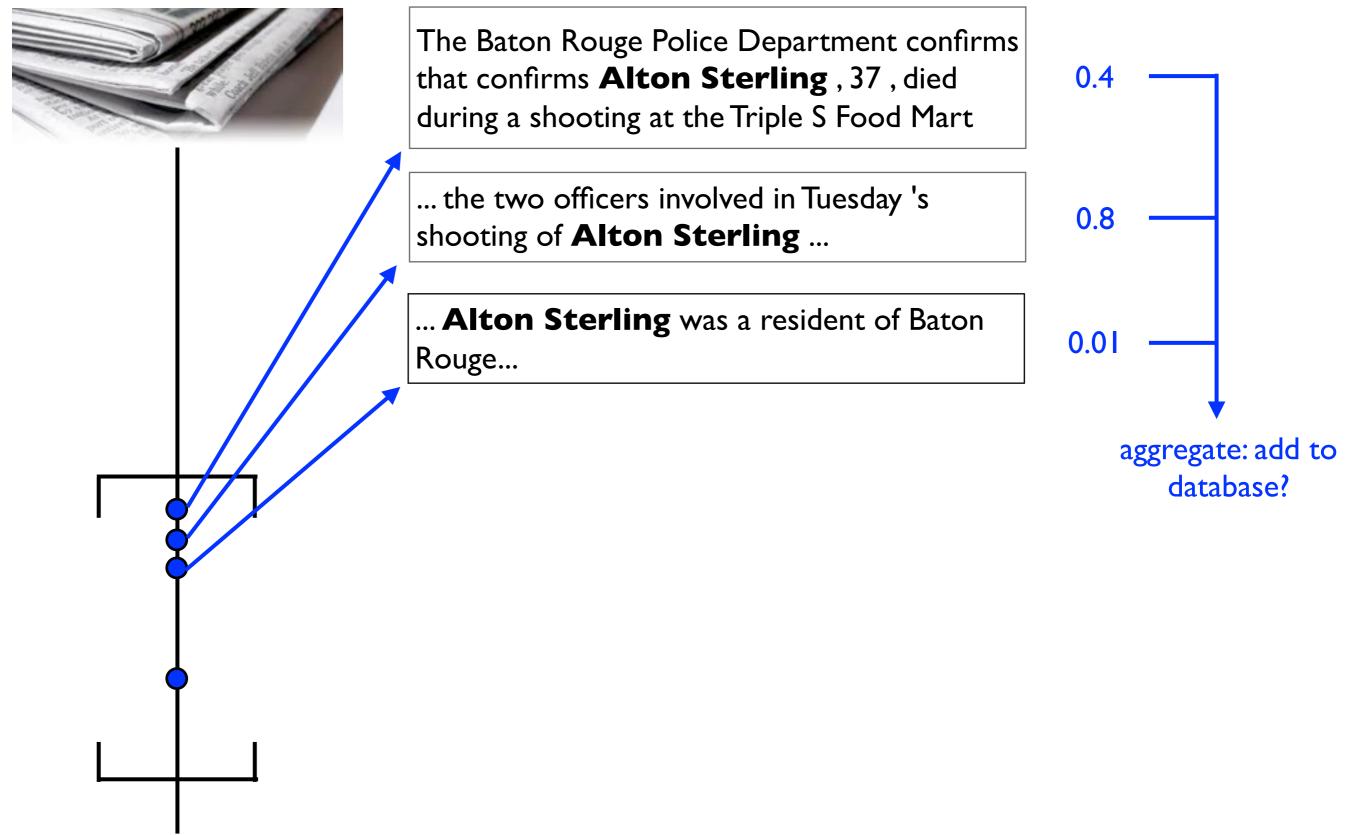
0.01

0.8

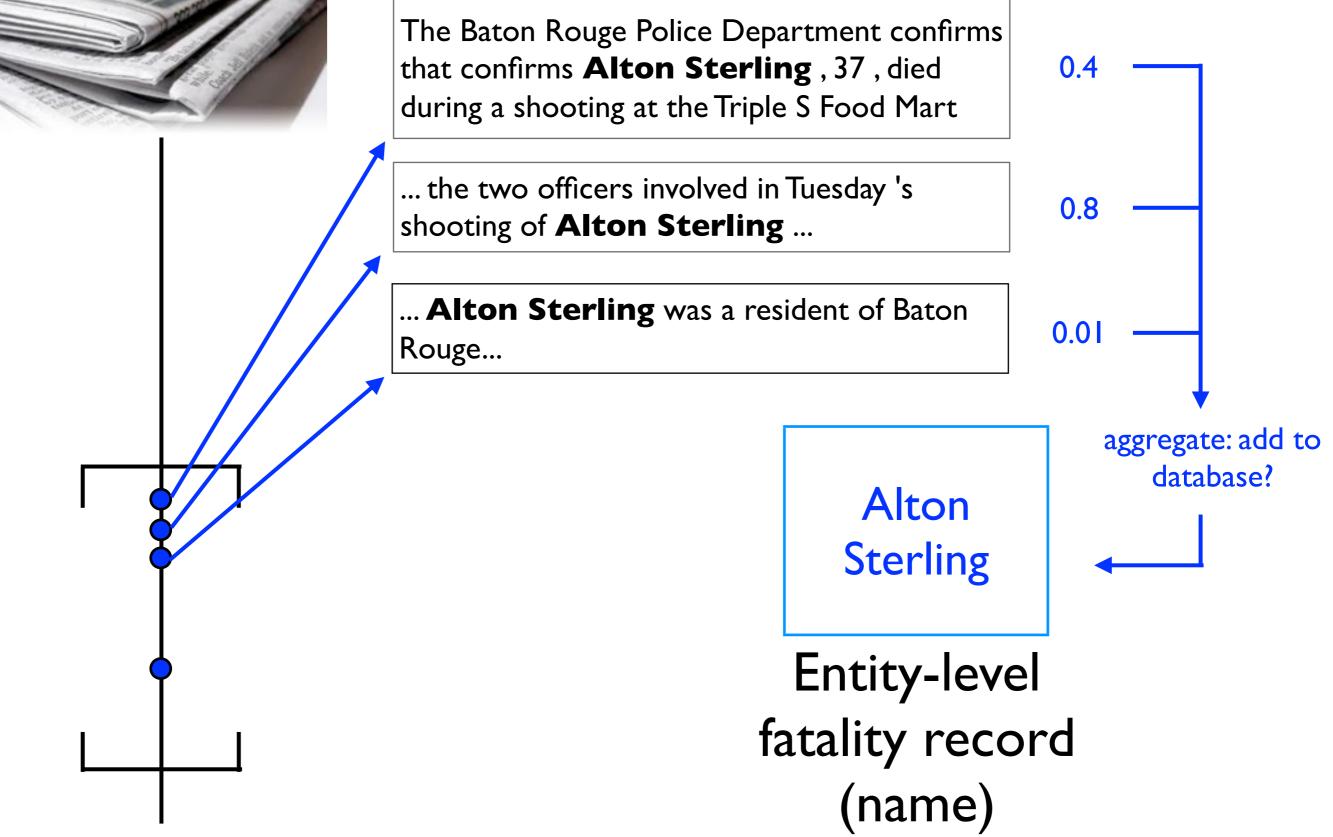
predict: describes police fatality?

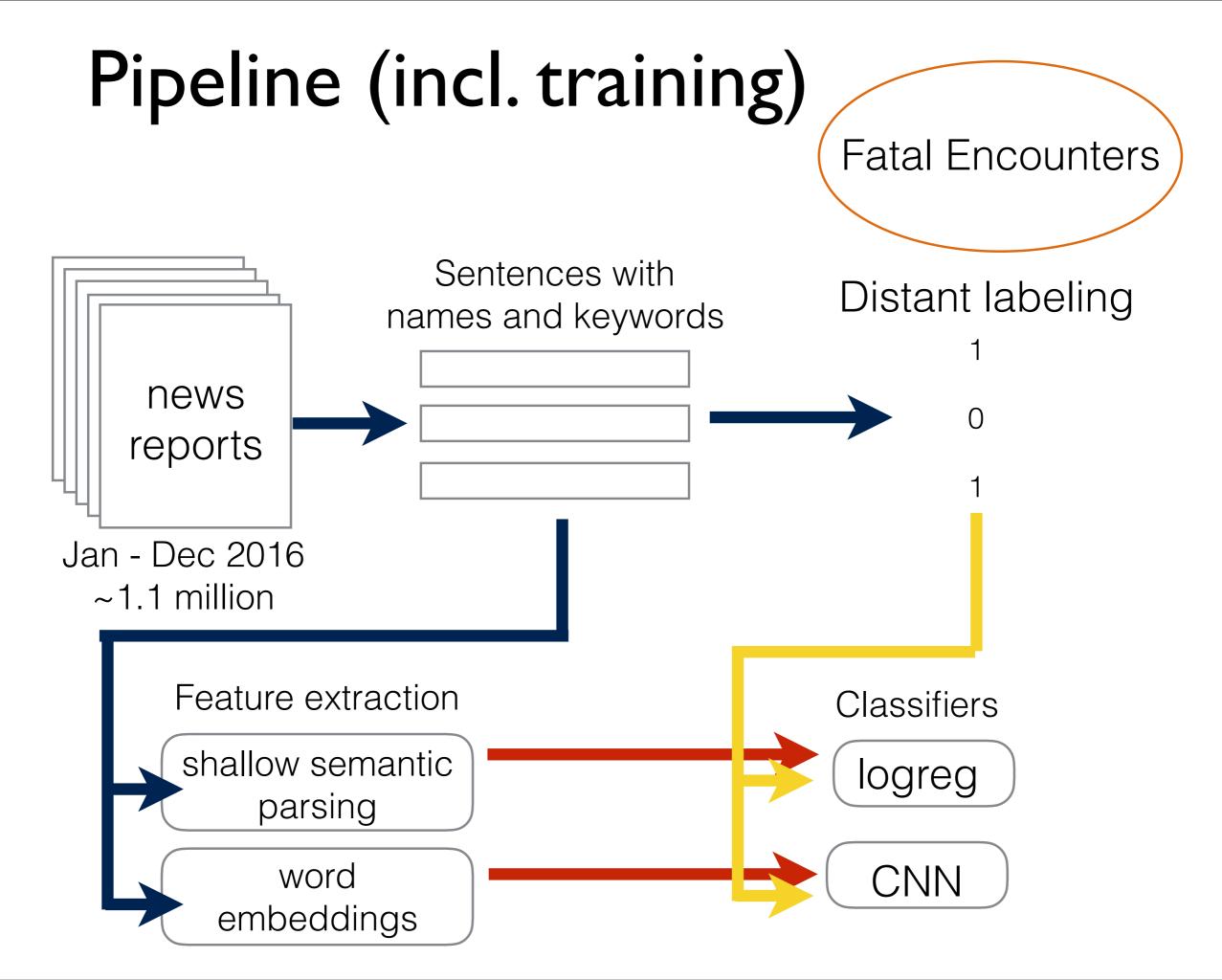
0.4

predict: describes police fatality?



predict: describes police fatality?





Data

FATAL ENCOUNTERS

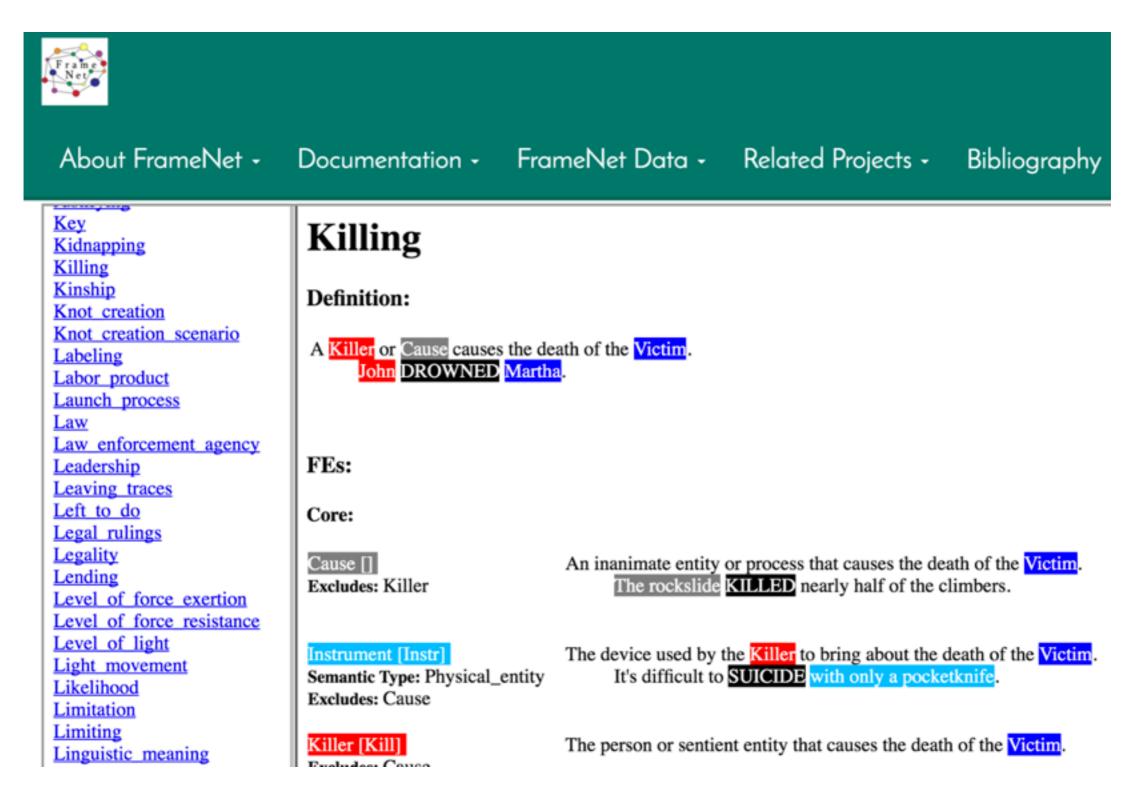
Google news

Knowledge base	Historical	Test
FE incident dates	Jan 2000 – Aug 2016	Sep 2016 – Dec 2016
FE gold entities (\mathcal{G})	17,219	452

News dataset	Train	Test
doc. dates	Jan 2016 –	Sep 2016 –
	Aug 2016	Dec 2016
total docs. (\mathcal{D})	793,010	317,345
total ments. (\mathcal{M})	132,833	68,925
pos. ments. (\mathcal{M}^+)	11,274	6,132
total entities (\mathcal{E})	49,203	24,550
pos. entities $(\hat{\mathcal{E}}^+)$	916	258

- Keyword-querying web scraper running throughout 2016
- Preprocessing: text extraction, deduplication (shingling/union find), spaCy NER+parsing, name cleanups

Can NLP help?



Computational Linguistics

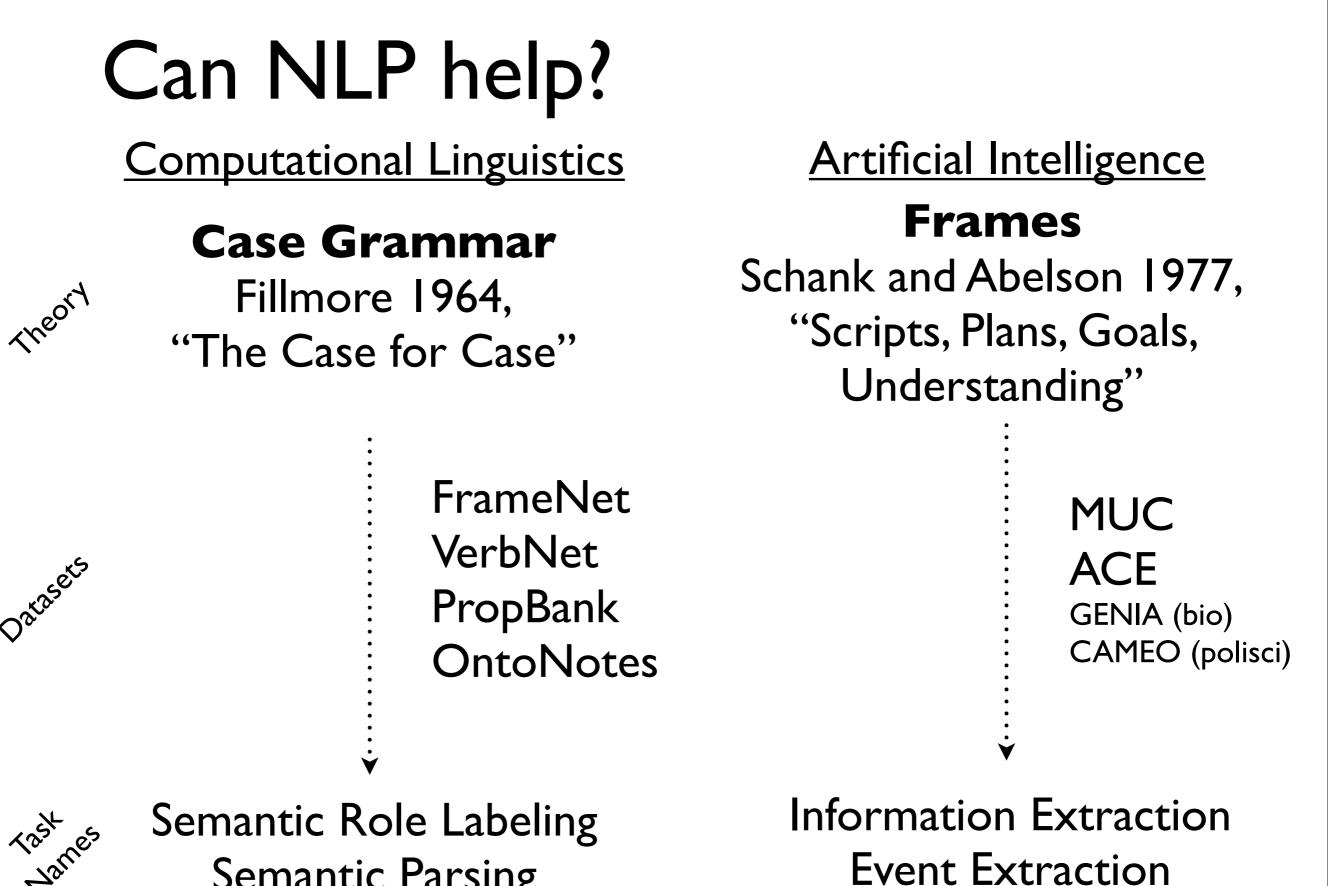
Artificial Intelligence

Computational Linguistics

Case Grammar

Fillmore 1964, "The Case for Case" Artificial Intelligence Frames Schank and Abelson 1977, "Scripts, Plans, Goals, Understanding"

theory



Event Extraction

Semantic Role Labeling Semantic Parsing

- Evaluate two off-the-shelf event extractors
 - SEMAFOR: trained for FrameNet [Das et al. 2014]
 - RPI Joint Info. Extraction: trained for ACE [Li and Ji 2014]
 - Found useful for gun violence extraction [Pavlick and Callison-Burch 2016]
- Classify an entity as killed by police if...
 - For at least one of their mentions, the extractor says...
 - (RI) a killing event took place,
 - and (R2) its patient is the mentioned person under consideration,
 - and (R3) its agent is described as police

	Rule	Prec.	Recall	F1
SEMAFOR	R1 R2 R3			
RPI-JIE	R1 R2 R3			
Oata upper bound		1.0	0.57	0.73
				23

 \square

- Evaluate two off-the-shelf event extractors
 - SEMAFOR: trained for FrameNet [Das et al. 2014]
 - RPI Joint Info. Extraction: trained for ACE [Li and Ji 2014]
 - Found useful for gun violence extraction [Pavlick and Callison-Burch 2016]
- Classify an entity as killed by police if...
 - For at least one of their mentions, the extractor says...
 - (RI) a killing event took place,
 - and (R2) its patient is the mentioned person under consideration,
 - and (R3) its agent is described as police

	Rule	Prec.	Recall	F1
SEMAFOR	R1 R2 R3	0.011	0.436	0.022
RPI-JIE	R1 R2 R3	0.016	0.447	0.030
ata upper bound		1.0	0.57	0.73
				23

 \square

- Evaluate two off-the-shelf event extractors
 - SEMAFOR: trained for FrameNet [Das et al. 2014]
 - RPI Joint Info. Extraction: trained for ACE [Li and Ji 2014]
 - Found useful for gun violence extraction [Pavlick and Callison-Burch 2016]
- Classify an entity as killed by police if...
 - For at least one of their mentions, the extractor says...
 - (RI) a killing event took place,
 - and (R2) its patient is the mentioned person under consideration,
 - and (R3) its agent is described as police

	Rule	Prec.	Recall	F1
SEMAFOR	R1 R2 R3	0.011 0.031	0.436 0.162	0.022 0.051
RPI-JIE	R1 R2 R3	0.016 0.044	0.447 0.327	0.030 0.078
ata upper bound		1.0	0.57	0.73

- Evaluate two off-the-shelf event extractors
 - SEMAFOR: trained for FrameNet [Das et al. 2014]
 - RPI Joint Info. Extraction: trained for ACE [Li and Ji 2014]
 - Found useful for gun violence extraction [Pavlick and Callison-Burch 2016]
- Classify an entity as killed by police if...
 - For at least one of their mentions, the extractor says...
 - (RI) a killing event took place,
 - and (R2) its patient is the mentioned person under consideration,
 - and (R3) its agent is described as police

	Rule	Prec.	Recall	F1
SEMAFOR	R1	0.011	0.436	0.022
	R2	0.031	0.162	0.051
	R3	0.098	0.009	0.016
RPI-JIE	R1	0.016	0.447	0.030
	R2	0.044	0.327	0.078
	R3	0.172	0.168	0.170
Data upper bound		1.0	0.57	0.73

- Evaluate two off-the-shelf event extractors
 - SEMAFOR: trained for FrameNet [Das et al. 2014]
 - RPI Joint Info. Extraction: trained for ACE [Li and Ji 2014]
 - Found useful for gun violence extraction [Pavlick and Callison-Burch 2016]
- Classify an entity as killed by police if...
 - For at least one of their mentions, the extractor says...
 - (RI) a killing event took place,
 - and (R2) its patient is the mentioned person under consideration,
 - and (R3) its agent is described as police

	Rule	Prec.	Recall	F1
SEMAFOR	R1	0.011	0.436	0.022
	R2	0.031	0.162	0.051
	R3	0.098	0.009	0.016
RPI-JIE	R1	0.016	0.447	0.030
	R2	0.044	0.327	0.078
	R3	0.172	0.168	0.170
Data upper bound		1.0	0.57	0.73

- Hard problem!
- Domain adaptation? Text cleanliness? Training data weirdness?

Model

• (1) Identify sentence-level fatality assertions

• (2) Aggregate to entity (person)-level predictions

Model

• (1) Identify sentence-level fatality assertions $P(z_i = 1 \mid x_i) = \sigma(\beta^{\mathsf{T}} f_{\gamma}(x_i))$ describes e.g. logistic regression, police killing sentence convolutional neural network event? Text Person killed by police? Alton Sterling was killed by police. True Officers shot and killed **Philando Castile**. True Officer Andrew Hanson was shot. False

Police report **Megan Short** was fatally shot False in apparent murder-suicide.

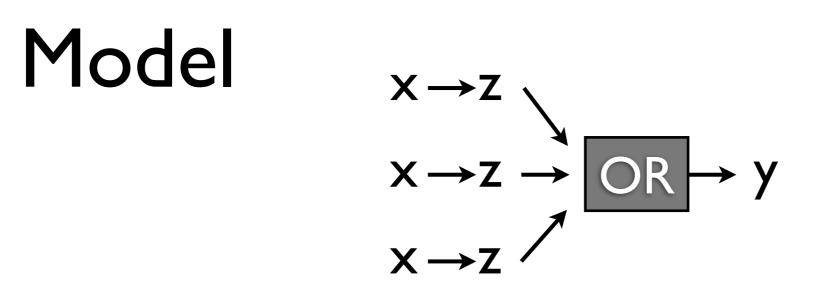
(2) Aggregate to entity (person)-level predictions

Model

• (1) Identify sentence-level fatality assertions $P(z_{i} = 1 \mid x_{i}) = \sigma(\beta^{\mathsf{T}} f_{\gamma}(x_{i}))$ $\overset{\text{describes}}{\underset{\text{event?}}{\mathsf{Text}}} \stackrel{\uparrow}{\underset{\text{Text}}{\mathsf{Text}}} \stackrel{\bullet}{\underset{\text{describes}}{\mathsf{rest}}} \sigma(\beta^{\mathsf{T}} f_{\gamma}(x_{i}))$

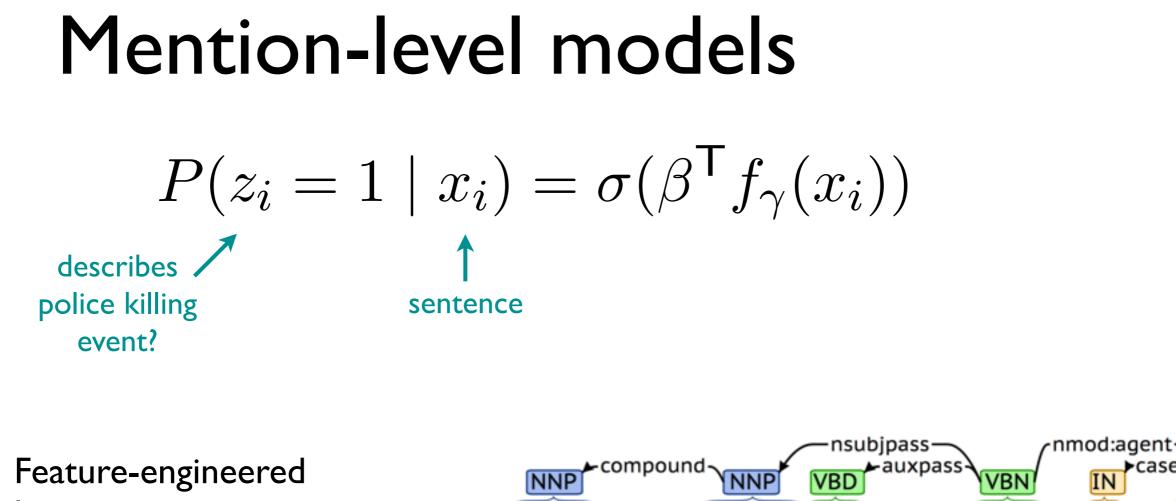
	by police?
Alton Sterling was killed by police.	True
Officers shot and killed Philando Castile.	True
Officer Andrew Hanson was shot.	False
Police report Megan Short was fatally shot in apparent murder-suicide.	False

• (2) Aggregate to entity (person)-level predictions $P(y_e = 1 | x_{\mathcal{M}(e)})$ was person e
killed by police? $I = 1 | x_{\mathcal{M}(e)} |$ all sentences mentioning person e

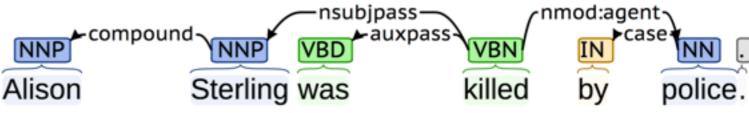


- Prediction through disjunction:
 - Decide an entity was killed by police, if at least one of their sentences asserts they were killed by police
- Integrate over x→z uncertainty: noisyor [e.g. Craven and Kumlien 1999]

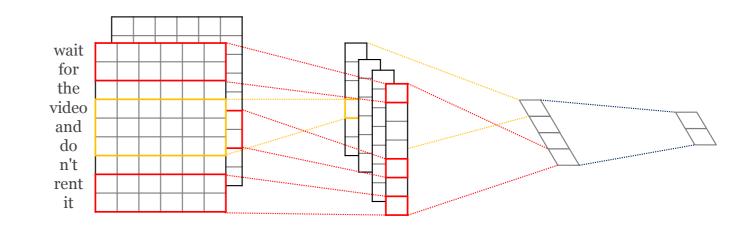
$$P(y_e = 1 | x_{\mathcal{M}(e)}) = 1 - \prod_{i \in \mathcal{M}(e)} (1 - P(z_i = 1 | x_i))$$
was person **e**
killed by police?
all sentences mentioning person **e**

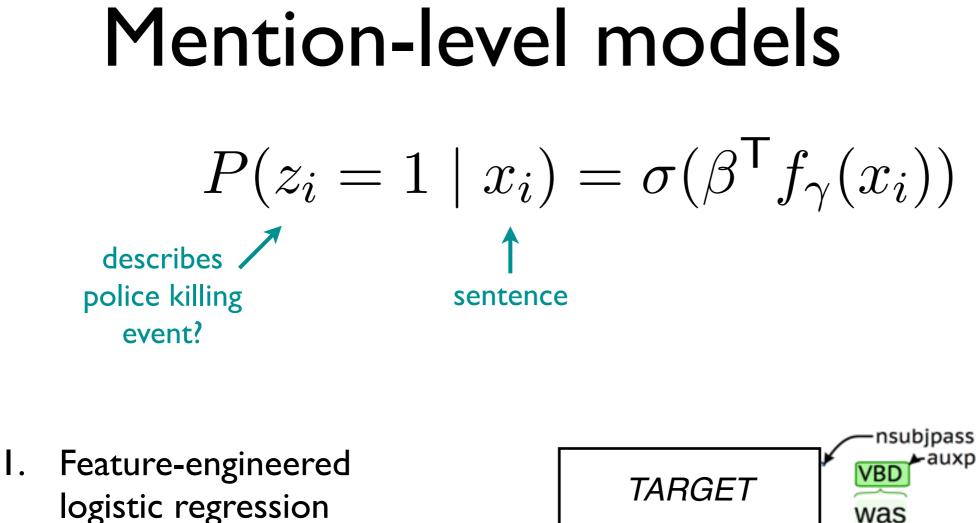


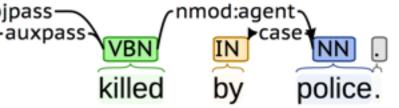
- Ι. logistic regression
 - Syntactic dependency paths
 - N-grams



2. Convolutional neural network [e.g. Nguyen and Grishman 2015]







2. Convolutional neural network [e.g. Nguyen and Grishman 2015]

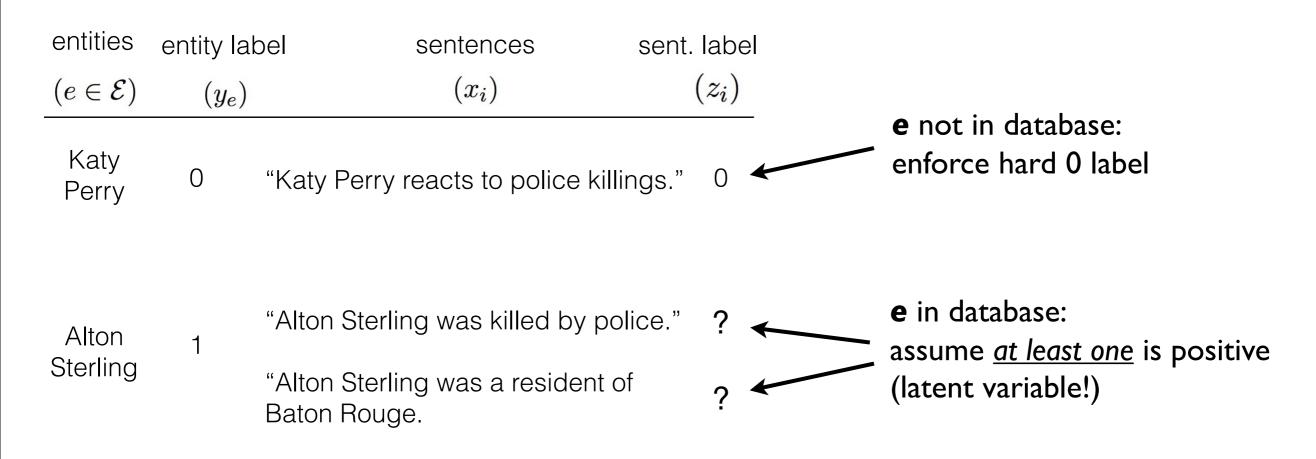
N-grams

Syntactic dependency paths



was

Distant supervision



- Multiple instance learning [Bunescu and Mooney 2007]
 - Much more accurate than assuming every sentence asserts the event!
- Probabilistic joint training: account for this uncertainty by maximizing marginal likelihood

$$P(y \mid x) = \sum_{z} P(y \mid z) P_{\theta}(z \mid x)$$

EM Training [Dempster et al. 1977]

E-step: posterior inference given at-least-one disjunction

$$q(z_i) := P(z_i \mid x_{\mathcal{M}(e_i)}, y_{e_i})$$

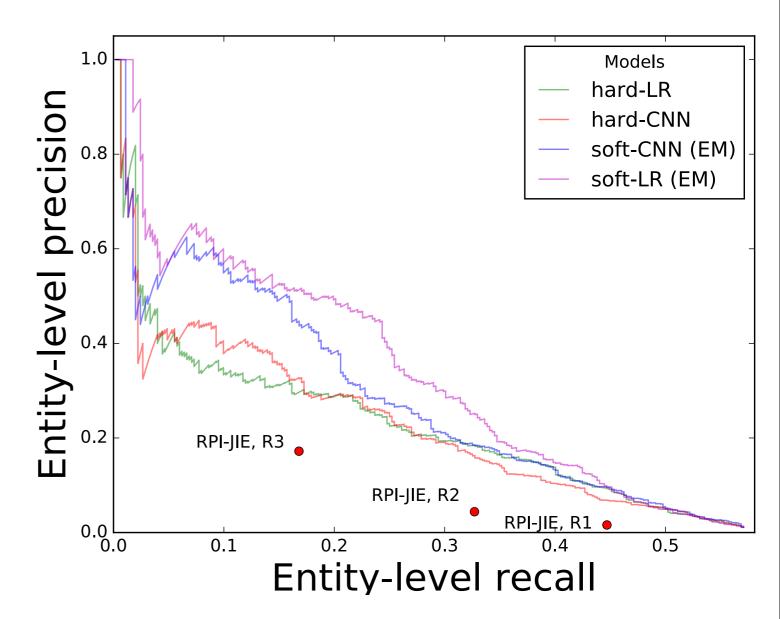
M-step: use soft labels

$$\max_{\theta} \sum_{i} \sum_{z \in \{0,1\}} q(z_i = z) \log P_{\theta}(z_i = z \mid x_i)$$

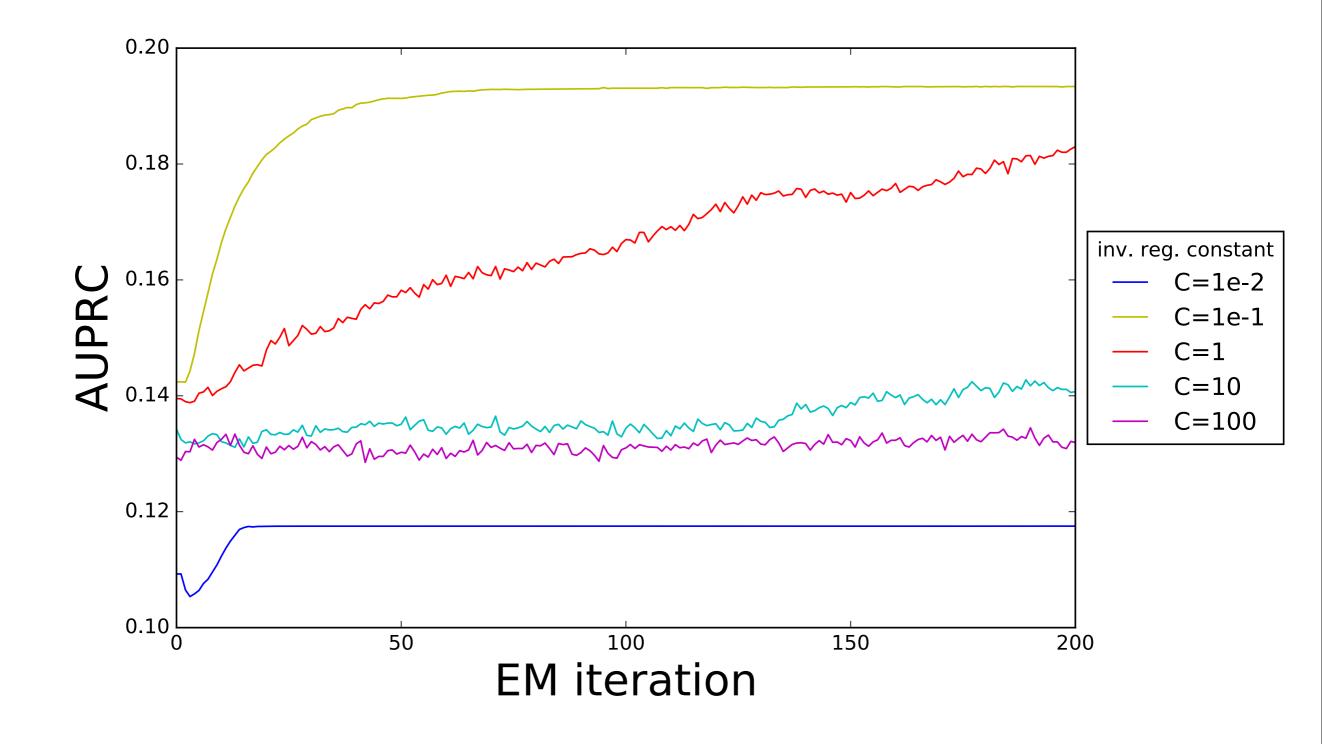
- Logistic regression: full M-step (convex opt., L-BFGS)
- Neural network: several epochs of stochastic gradient descent (Adagrad)
 - Similar to: Expected Conjugate Gradient [Salakhutdinov et al. 2003]
- Staged initialization (log.reg. training is nonrandom :))

Thursday, April 27, 17

Model	AUPRC	F1
hard-LR, dep. feats.	0.117	0.229
hard-LR, n-gram feats.	0.134	0.257
hard-LR, all feats.	0.142	0.266
hard-CNN	0.130	0.252
soft-CNN (EM)	0.164	0.267
soft-LR (EM)	0.193	0.316
Data upper bound ($\S4.6$)	0.57	0.73



EM Training Logistic regression



EM Training Neural network

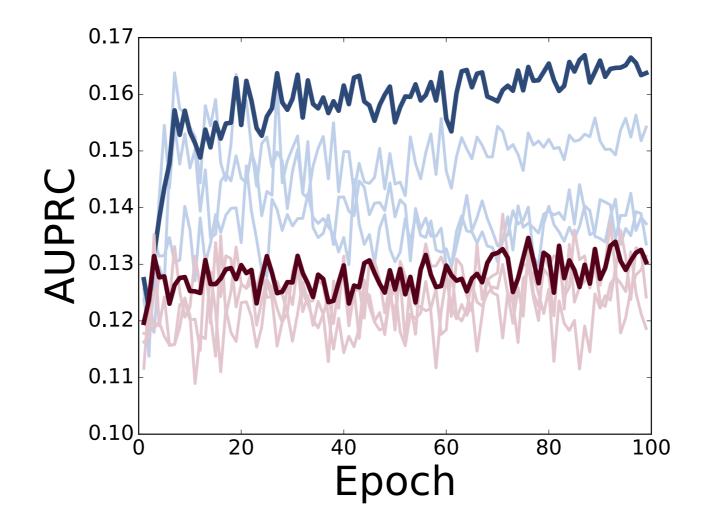


Figure 3: Test set AUPRC for three runs of soft-CNN (EM) (**blue**, higher in graph), and hard-CNN (**red**, lower in graph). Darker lines show performance of averaged predictions.

Predictions

entity (e)	ment.(<i>i</i>) prob.	ment. text (x_i)
Keith Scott (true pos)	0.98	Charlotte protests Charlotte's Mayor Jennifer Roberts speaks to reporters the morning after protests against the police shooting of Keith Scott , in Charlotte, North Carolina .
Terence Crutcher (true pos)	0.96	Tulsa Police Department released video footage Monday, Sept. 19, 2016, showing white Tulsa police officer Betty Shelby fatally shooting Terence Crutcher , 40, a black man police later determined was unarmed.
Mark Duggan (false pos)	0.97	The fatal shooting of Mark Duggan by police led to some of the worst riots in England's recent history.
Logan Clarke (false pos)	0.92	Logan Clarke was shot by a campus police officer after waving kitchen knives at fellow students outside the cafeteria at Hug High School in Reno, Nevada, on December 7.

Table 7: Example of highly ranked entities, with selected mention predictions and text.

Predictions: top-ranked

rank	name	positive	analysis
1	Keith Scott	true	
2	Terence Crutcher	true	
3	Alfred Olango	true	
4	Deborah Danner	true	
5	Carnell Snell	true	
6	Kajuan Raye	true	
7	Terrence Sterling	true	
8	Francisco Serna	true	
9	Sam DuBose	false	name mismatch
10	Michael Vance	true	
11	Tyre King	true	
12	Joshua Beal	true	
13	Trayvon Martin	false	killed, not by police
14	Mark Duggan	false	non-US
15	Kirk Figueroa	true	
16	Anis Amri	false	non-US
17	Logan Clarke	false	shot not killed
18	Craig McDougall	false	non-US
19	Frank Clark	true	
20	Benjamin Marconi	false	name of officer

Conclusions

- Natural language processing can help acquire more behavioral data from news
 - International relations [Schrodt and Gerner, 1994; Schrodt, 2012; Boschee et al., 2013; O'Connor et al., 2013; Gerrish, 2013]
 - Protests [Hanna 2017]
 - Gun violence [Pavlick et al. 2016]
- Define a new corpus-level event extraction task
 - Planning to release data. Any interest in shared task?
- Task/domain-specific approach for the "database update" problems
 - How to generalize across many questions / event types?
- Assumes media production reflects reality. Alternative: analyze e.g. media bias/attention
 - Typical approach in political science or literature content analysis
- NLP and social analysis
 - Concrete, real-world tasks useful testbed for NLP research
 - NLP could offer something useful for important tasks!