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What can statistical text analysis
tell us about society?
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• Manual content analysis: analyze ideas, concepts, opinions 
etc. in text.  Long and rich history (Krippendorff 2012) -- but 
very labor-intensive

• From manual to automated content analysis

• Quantitative comparisons

• Pattern recognition

• Qualitative drilldowns

• Many emerging examples of automated text content analysis
[Political science, media studies, economics, psychology, sociology of science, 
sociolinguistics, public health, history, literature...]

• Appropriating tools from natural language processing, 
information retrieval, data mining, machine learning as 
quantitative social science methodology



Text as measurement?: concepts

U.S. convention speeches’ word frequencies, by party
http://www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html

http://www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
http://www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html


Text as measurement: events
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Automatic event extraction from news reports
(Schrodt 1993)

Schrodt: Event Data Page 4

agency.  These reports were automatically coded by a specialized computer program into the World

Events Interaction Survey (WEIS) event data categories developed by Charles McClelland (1976) .  The

categorical WEIS events were then converted to a monthly numerical score using a scale devised by

Goldstein (1992); as in Figure 1, negative scores indicate conflict and positive scores cooperation.

This time series shows the pattern of interactions—largely uses of force—in considerable

detail.  The initial increase in conflictual activity in 1982-83 corresponds to Israel's invasion of

Lebanon, which was initially directed against Palestine Liberation Organization forces.  The invasion

is followed by a period of five years of relative quiet, though a separate series of event data on Israel's

interactions with Lebanon during this period shows a great deal of conflict as opposition to Israeli

forces shifts from the PLO to various Lebanese groups.  The int i fada  begins abruptly in December 1987

and then gradually declines over the next five years, though there is another upsurge in violence

following the election of a Labor government in Israel in the summer of 1992.

As with the case of the USA-USSR interactions, this time series gives a more exact measure of

the patterns of events over time.  For example, while the int i fada  follows a lull in conflict during the

summer of 1987, the event data also show a general increase in conflict beginning about 18 months

earlier.  This increase may have been a precursor to the larger uprising.

Figure 2
Israel-Palestinian interactions, 1982-1992
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As these two figures illustrate, event data can be used to summarize the overall relationship

between two countries over time.  The patterns shown by event data usually correspond to the narrative

summaries of the interactions found in historical sources, but unlike narrative accounts, event data can

be subjected to statistical analysis.  As a consequence, event data are frequently used to study foreign

policy outcomes and some characteristics of the international environment within which foreign policy

decisions occur.



Taxonomy of text analysis methods
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Data and Prior Knowledge
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Detecting cultural phenomena in 
textual social media

Language and Geography
Jacob Eisenstein, Brendan O’Connor,
Noah Smith, Eric Xing

Opinions and Time
Brendan O’Connor, Ramnath Balasubramanyan, 
Bryan Routledge, Noah Smith

Internet Censorship
David Bamman, Brendan O’Connor, Noah Smith



Detecting cultural phenomena in 
textual social media

From Tweets to Polls: 
Linking Text Sentiment 

to Public Opinion Time Series.
ICWSM 2010

Opinions and Time
Brendan O’Connor, Ramnath Balasubramanyan, 
Bryan Routledge, Noah Smith

http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf


Measuring public opinion
through social media?

9

!"#$%"&'(&)*+*&

approve

disapprove



Measuring public opinion
through social media?

9

!"#$%&

!"#$%"&'(&)*+*&

approve

disapprove



Measuring public opinion
through social media?

9

!"#$%&

!"#$%"&'(&)*+*&

approve

disapprove



Measuring public opinion
through social media?

9

!"#$%&

!"#$%& !"#$%&
!""#$"%&$'

($)&'*$+,-$+&'
.$%/0#$'

!"#$%"&'(&)*+*&

approve

disapprove



Measuring public opinion
through social media?

9

!"#$%&

!"#$%& !"#$%&
!""#$"%&$'

($)&'*$+,-$+&'
.$%/0#$'

!"#$%&$'&()*&$"$$
+),)-"($,&"+.(&,&#/0$

!"#$%"&'(&)*+*&

approve

disapprove



Method

10



Method

10

Poll Data

Which tweets 
correspond to 
which polls?

• Consumer confidence, 
2008-2009
• Index of Consumer 

Sentiment (Reuters/
Michigan)

• Gallup Daily 

• 2008 Presidential Elections
• Aggregation, 

Pollster.com

• 2009 Presidential Job 
Approval
• Gallup Daily



Method

10

Poll Data

Which tweets 
correspond to 
which polls?

• Consumer confidence, 
2008-2009
• Index of Consumer 

Sentiment (Reuters/
Michigan)

• Gallup Daily 

• 2008 Presidential Elections
• Aggregation, 

Pollster.com

• 2009 Presidential Job 
Approval
• Gallup Daily

Topic Keywords

Analyzed subsets of messages 
that contained manually 
selected topic keyword

“economy”
“jobs”
“job”

“obama”
“mccain”

“obama”

Subset of Gardenhose public 
tweets over 2008-2009



Method

10

Poll Data

Which tweets 
correspond to 
which polls?

• Consumer confidence, 
2008-2009
• Index of Consumer 

Sentiment (Reuters/
Michigan)

• Gallup Daily 

• 2008 Presidential Elections
• Aggregation, 

Pollster.com

• 2009 Presidential Job 
Approval
• Gallup Daily

Sentiment Analysis
Subjectivity Clues lexicon from 
OpinionFinder (Wilson et al 
2005)

sentimentt(topic_word) =

MessageCountt(pos. word AND topic word)
MessageCountt(neg. word AND topic word)

=
p(pos. word | topic word, t)
p(neg. word | topic word, t)

Topic Keywords

Analyzed subsets of messages 
that contained manually 
selected topic keyword

“economy”
“jobs”
“job”

“obama”
“mccain”

“obama”

Subset of Gardenhose public 
tweets over 2008-2009



A note on the sentiment list
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(Top examples)
 word  valence   count 
 will  positive  3934  
 bad   negative  3402  
 good  positive  2655  
 help  positive  1971 

(Random examples)
 word        valence   count 
 funny       positive  114 
 fantastic   positive  37  
 cornerstone positive  2 
 slump       negative  85 
 bearish     negative  17 
 crackdown   negative  5 

• Not well-suited for social media English

• “sucks”  “:)”  “:(“



Smoothed comparisons:
“jobs” sentiment vs. consumer confidence
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Smoothed comparisons:
“jobs” sentiment vs. consumer confidence
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Sept 15 2008:
Lehman collapse

Mar 2009:
Stock market

begins recovery



Which leads, poll or text?
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• Cross-corr between

• Sentiment score on 
day t

• Poll day t+L

• sentiment(“jobs”) is 
leading indicator for 
poll



Keyword message selection
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15-day windows, no lag
sentiment(“jobs”)! ! !  ! ! r = +0.80
sentiment(“job”)! ! ! ! ! ! r = +0.07
sentiment(“economy”)! ! ! r = –0.10

Look out for stemming
sentiment(“jobs” OR “job”) ! r = +0.40



Presidential elections [doesn’t work]
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• 2008 elections
sen(“obama”), 
sen(“mccain”) do not 
correlate to polls



Presidential elections [doesn’t work]
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• 2008 elections
sen(“obama”), 
sen(“mccain”) do not 
correlate to polls

• 2009 job approval
sen(“obama”) => r = 0.72
Looks easy: simple decline

Presidential job approval [~works]



election.twitter.com 
Proprietary sentiment analyzer over Obama vs Romney 
name-containing tweets
http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf

http://election.twitter.com
http://election.twitter.com
http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf
http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf
http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf
http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf


election.twitter.com 
Proprietary sentiment analyzer over Obama vs Romney 
name-containing tweets
http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf

http://election.twitter.com
http://election.twitter.com
http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf
http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf
http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf
http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf


Twitter and Polls
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• Preliminary results that sentiment analysis on Twitter data can give 
information similar to opinion polls
• But, still not well-understood!

• Who is using Twitter?
• Massive changes over time (2008 Twitter != 2012 Twitter)
• News vs. opinion?
• Other data sources might better distinguish?

• Better text analysis
• Very wide linguistic variation on Twitter
• Word sense ambiguity: “steve jobs”
• Better data sources

• Suggestion for future work: analyze correlations to pre-existing surveys 
and other attitude measurements

• Not a replacement for polls, but seems potentially useful.
Between ethnography and surveys?

• See also
"I Wanted to Predict Elections with Twitter and all I got was this Lousy 
Paper" -- A Balanced Survey on Election Prediction using Twitter Data
Daniel Gayo-Avello, arXiv 2012

http://arxiv.org/find/cs/1/au:+Gayo_Avello_D/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Gayo_Avello_D/0/1/0/all/0/1


Taxonomy of text analysis methods
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Detecting cultural phenomena in 
textual social media

Language and Geography
Jacob Eisenstein, Brendan O’Connor,
Noah Smith, Eric Xing

Internet Censorship
David Bamman, Brendan O’Connor, Noah Smith

Opinions and Time
Brendan O’Connor, Ramnath Balasubramanyan, 
Bryan Routledge, Noah SmithA Latent Variable Model for 

Geographic Lexical Variation.
EMNLP 2010.

http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf
http://brenocon.com/oconnor_balasubramanyan_routledge_smith.icwsm2010.tweets_to_polls.pdf


• Languages exhibit variation, reflecting geography, 
status, race, gender, etc.

26



27

! !

!"#$%&'()*+,$*-'#."%/*'(*0,%'#.*1"-'#

! 2("*#33$,#%&4*0"#$%&*+,$*5(,6(*7#$'#8."*
#./"$(#/',(09*":):*;,<*=*;'(>*=*;#..*

?@<$#/&*ABCB9*D9*E,8"$)*FGGHI

! @(,6(*7#$'#8."0*.'5"*J;'(>K*-,(L/*#33"#$*1<%&

! M$"*/&"$"*("6*7#$'#8."0*6"*-,(L/*5(,6*#8,</N



Data

• Mobile clients for Twitter allow 
encoding of GPS location

• Our corpus: 380K messages 
from 9500 authors in the USA 
(March 2010)

• Informal and conversational

• 25% of the most common words 
not in the dictionary

• More than half of messages 
mention another user

28
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Generative Text Models

• How to simultaneously discover dialect regions 
and the words that characterize them?

• Probabilistic generative models

• a.k.a. directed graphical models

• Examples for text:

• Hidden Markov Model 

• Naive Bayes

• Topic Models, e.g. Latent Dirichlet Allocation
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Taxonomy of text analysis methods
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Model
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All of an author’s tweets 
collapsed into one “document”

Author is assigned one location



Model
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Locations are Gaussian 
mixture over space

r ∼ �π

(lat, lon) ∼ N(�µr,Σr)



Model
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Locations are Gaussian 
mixture over space

Topics are logistic-normal 
over words

Model fitting: variational mean field 
(Blei and Lafferty 06; Penny 01)

r ∼ �π

(lat, lon) ∼ N(�µr,Σr)

�φk ∼ N(�a, b2I)

�ηkj ∼ N(�φk, s
2
kI)

θ ∼ Dir(�α)

z ∼ �θ

w ∼ exp(�ηzr)

Author’s words are admixture 
over regional topics



• Regions blend: text and geography jointly 
determine region membership

37



Validation: location prediction
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GeoTM K=10

GeoTM K=1

SLDA

KNN

Lasso

0 200 600 1000

Median distance, kilometers

494

644

728

853

712

• www.ark.cs.cmu.edu/GeoTwitter

http://www.ark.cs.cmu.edu/GeoTwitter
http://www.ark.cs.cmu.edu/GeoTwitter


Analysis
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Linguistic Diffusion

• Which groups or geographic regions influence 
others?  Where do new linguistic trends start?

• How do geographic or demographic factors 
affect linguistic transmission?

• Work in progress:
Mapping the geographical diffusion of new words
http://arxiv.org/abs/1210.5268
Eisenstein, O’Connor, Smith, Xing 
NIPS 2012 Workshop on Social Network and Social 
Media Analysis

http://arxiv.org/abs/1210.5268
http://arxiv.org/abs/1210.5268


How do linguistic innovations spread?

• Distance

• Wave and Gravity models: linguistic innovations spread 
throughout a person’s life; likelihood of contact based on 
distance (Bailey 1973, Trudgill 1974)

• Cascade model: innovations travel from largest city to second-
largest, etc. (Labov 2003)

• Cultural factors

• e.g. African-American influences on standard American 
English: cool, rip off, uptight

44



How to study language change?
• Small number of carefully chosen linguistic variables -- esp. 

phonology

• Variation over apparent time: compare people of different 
ages

• Complementary approach from social media data

• Time of posting (over a few years)

• Lexical variables

• Fit simple regression-based model to large amount of real 
data

• Contrast: theoretical quantitative models (dynamical systems, 
Nash equilibria, Bayesian learners, agent-based simulations...)

45



Data

• 86 weeks (Dec 2009 to May 2011)

• 44 million geotagged messages (500k authors)

• Aggregated by week

• Assigned to 200 Metropolitan Statistical Areas; 
demographics from U.S. Census

• Simple interpretability

• 10,000 most frequent words => 1,818 (used at 
least 5 times in one week within one MSA)

46



Diffusion of novel words

47

weeks 1-8 weeks 35-43 weeks 78-86

bruh

af

-__-

!

!

! !
!!

!

!
! !

!
!

!

!

!
!

!!!
!

!

!!

!
!

!

!
!

!

!

!

!!

!
!

!

!
!

!
!

!

!

!

! ! !!

!

!
!
!

!!!
!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!
!

!
!

!

!

!

!

!

!

!
!

!

!

!
!

!

!!

!

!!
!

!

!

!

!

!

!

!
!

!

!

! !

!

!

!

!

!

!

!

!

!

!
!

!

! !

!!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!
!

!!

!

! !

!

!

!

!

!
!
!!
!

! !
!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!
!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

Figure 1: Change in popularity for three words: bruh, af, - -. Blue circles indicate cities in which the proba-
bility of an author using the word in a week in the listed period is greater than 1% (2.5% for bruh).

Clearly geography plays some role in each example — most notably in bruh, which may reference
southeastern phonology. But each example also features long range “jumps” over huge parts of the
country. What explains, say, the movement of af from southern California all the way to a cluster of
cities around Atlanta?

This paper presents a quantitative model of the geographical spread of lexical innovations through
social media. Using a novel corpus of millions of Twitter messages, we are able to trace the changing
popularity of thousands of words. We build an autoregressive model that captures aggregate patterns
of language change across 200 metropolitan areas in the United States. The coefficients of this model
correspond to sender/receiver pairs of cities that are especially likely to transmit linguistic influence.

After inducing a network of cities linked by linguistic influence, we search for the underlying factors
that explain the network’s structure. We show that while geographical proximity plays a strong role
in shaping the network of linguistic influence, demographic homophily is at least equally important.
Going beyond homophily, we identify asymmetric features that make individual cities more likely
to send or receive lexical innovations.

2 Related work

This paper draws on several streams of related work, including sociolinguistics, theoretical models
of language change, and network induction.

2.1 Sociolinguistic models of language change

Language change has been a central concern of sociolinguistics for several decades. This tradition
includes a range of theoretical accounts of language change that provide a foundation for our work.

The wave model argues that linguistic innovations are spread through interactions over the course
of an individual’s life, and that the movement of a linguistic innovation from one region to another
depends on the density of interactions [9]. The simplest version of this theory supposes that the
probability of contact between two individuals depends on their distance, so linguistic innovations
should diffuse continuously through space.

The gravity model refines this view, arguing that the likelihood of contact between individuals from
two cities depends on the size of the cities as well as their distance; thus, linguistic innovations
should be expected to travel between large cities first [10]. Labov argues for a cascade model in
which many linguistic innovations travel from the largest city to the next largest, and so on [11].
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Model

• MSAs as nodes in diffusion network

• “Influence”/“Transmission” from r -> s: if words popular in 
region r later become popular in s.  [Lead-lag notion of 
influence/transmission]

• Can’t use simple cross-correlations: confounds for size of 
region, global events (e.g. TV shows, holidays), etc.

• Logistic binomial probability whether an author uses a 
word at a particular (region, time)

• “Influence” represented as linear dynamical system
(latent vector autoregression)

48



Model: word frequencies by time and region

• Model fitting with EM

• (30 million variables, takes a while)

• Fitting eta: Gaussian approximation to logistic-binom

• Kalman smoother to learn diag(A); non-diagonals from 
VAR fits to eta samples
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ci,r,t count of individuals who use word i in region r at time t
sr,t count of individuals who post messages in region r at time t

θi,r,t estimated probability of using word i in region r at time t
νi overall log-frequency of word i
τr,t general activation of region r at time t
ηi,∗,t global activation of word i at time t
ηi,r,t activation of word i at time t in region r
ηi,t vertical concatenation of each ηi,r,t and ηi,∗,t, a vector of size R+ 1
σ(·) the logistic function, σ(x) = ex/(1 + ex)

A autoregressive coefficients (size R×R)

Γ variance of the autoregressive process (size R×R)

ζi,r,t parameter of the Taylor approximation to the logistic binomial likelihood

mi,r,t Gaussian pseudo-emission in the Kalman smoother

Σ2
i,r,t emission variance in the Kalman smoother

ω(k)
i,r,t weight of particle k in the forward pass of the sequential Monte Carlo algorithm

Table 1: Summary of mathematical notation. The index i indicates words, r indicates regions (MSAs), and t
indicates time (weeks).

ignored. This yields the linear model:

ηi,t ∼ Normal(Aηi,t−1,Γ) ci,r,t ∼ Binomial(sr,t,σ(νi + τr,t + ηi,∗,t + ηi,r,t)) (1)

where the region-to-region coefficients A govern lexical diffusion for all words. We rewrite the sum

ηi,∗,t + ηi,r,t as a vector product hrηi,t, where ηi,t is the vertical concatenation of each ηi,r,t and

ηi,∗,t, and hr is a row indicator vector that picks out the elements ηi,r,t and ηi,∗,t.

Our ultimate goal is to estimate confidence intervals around the cross-regional autoregression coef-

ficients A, which are computed as a function of the regional-temporal word activations ηi,r,t. We

take a Monte Carlo approach, computing samples for the trajectories ηi,r, and then computing point

estimates of A for each sample, aggregating over all words i. Bayesian confidence intervals can then

be computed from these point estimates, regardless of the form of the estimator used to compute A.

We now discuss these steps in more detail.

4.1 Sequential Monte Carlo estimation of word activations

To obtain smoothed estimates of η, we apply a sequential Monte Carlo (SMC) smoothing algorithm

known as Forward Filtering Backward Sampling (FFBS) [30]. The algorithm appends a backward

pass to any SMC filter that produces a set of particles and weights {η(k)i,r,t,ω
(k)
i,r,t}1≤k≤K . Our forward

pass is a standard bootstrap filter [31]: by setting the proposal distribution q(ηi,r,t|ηi,r,t−1) equal

to the transition distribution P (ηi,r,t|ηi,t−1;A,Γ), the forward particle weights are equal to the

recursive product of the emission likelihoods,

ω(k)
i,r,t = ω(k)

i,r,t−1Binomial(ci,r,t; sr,t,σ(νi + τr,t + hrη
(k)
i,t )). (2)

We experimented with more complex SMC algorithms, including resampling, annealing, and more

accurate proposal distributions, but none consistently achieved higher likelihood than the straight-

forward bootstrap filter.

FFBS converts the filtered estimates P (ηi,r,t|ci,r,1:t, sr,1:t) to a smoothed estimate

P (ηi,r,t|ci,r,1:T , sr,1:T ) by resampling the forward particles in a backward pass. In this pass,

at each time t, we select particle η(k)i,r,t with probability proportional to ω(k)
i,r,tP (ηi,r,t+1|ηi,r,t), which

is the filtering weight multiplied by the transition probability. When we reach t = 1, we have

obtained an unweighted draw from the distribution P (ηi,r,1:T |ci,r,1:T , sr,1:T ;A,Γ, ν, τ). We can

use these draws to estimate the distribution of any arbitrary function of ηi.
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Figure 2: Left: Monte Carlo and Kalman smoothed estimates of η for the word ctfu in five cities. Right:
estimates of term frequency in each city. Circles show empirical frequencies.

4.2 Estimation of system dynamics parameters

The parameter Γ controls the variance of the latent state, and the diagonal elements of A control
the amount of autocorrelation within each region. The maximum likelihood settings of these pa-
rameters are closely tied to the latent state η. For this reason, we estimate these parameters using
an expectation-maximization algorithm, iterating between maximum-likelihood estimation of Γ and
diag(A) and computation of a variational bound on P (ηi|ci, s;Γ,A). We run the sequential Monte
Carlo procedure described above only after converging to a local optimum for Γ and diag(A). This
combination of variational and Monte Carlo inference offers advantages of both: variational infer-
ence gives speed and guaranteed convergence for parameter estimation, while Monte Carlo inference
allows the computation of confidence intervals around arbitrary functions of the latent variables η.
Similar hybrid approaches have been proposed in the prior literature [32].

The variational bound on P (ηi|ci, s;Γ,A) is obtained from a Gaussian approximation to the Bino-
mial emission distribution. This enables the computation of the joint density by a Kalman smoother,
a two-pass procedure for computing smoothed estimates of a latent state variable given Gaussian
emission and transition distributions. For each ηi,r,t, we take a second-order Taylor approximation
to the emission distribution at the point ζi,r,t. This yields a Gaussian approximation,

Binomial(ci,r,t|sr,t,σ(νi + τr,t + ηi,∗,t + ηi,r,t)) ≈ Normal(mi,r,t|ηi,r,t,Σ2
i,r,t), (3)

where the parameters m and Σ2 depend on a Taylor approximation parameter ζi,r,t,

Σ2
i,r,t =(sr,tσ(ζi,r,t)(1− σ(ζi,r,t)))

−1 (4)

mi,r,t =Σ2
i,r,t(ci,r,t − sr,tσ(ζi,r,t)) + ζi,r,t − τr,t − νi (5)

ζi,r,t ←ηi,r,t + ηi,∗,t + τr,t + νi (6)

Intuitively, the emission parameter m depends on the gap between the observed counts c and the
expected counts sσ(ζ). We initialize ζi,r,t to the relative frequency estimate σ−1( ci,r,tsr,t

), and then
iteratively update it to improve the quality of the approximation.

During initialization, the parameters νi (overall word log-frequency) and τr,t (global activa-
tion in region r at time t) are fixed to their maximum-likelihood point estimates, assuming
ηi,r,t = ηi,∗,t = 0. The global word popularity ηi,∗,t is a latent variable; we perform infer-
ence by including it in the latent state of the Kalman smoother. The final state equations are:

ηi,t ∼ Normal(Aηi,t−1,Γ) mi,t ∼ Normal(Hηi,t,Σ
2
i,t), (7)

where the matrix A is diagonal and the matrix H is a vertical concatenation of all row vectors hr

(equivalently, it is a horizontal concatenation of the identity matrix with a column vector of 1s). As
we now have Gaussian equations for both the emissions and transitions, we can apply a standard
Kalman smoother (we use an optimized version of the Bayes Net Toolbox for Matlab [33]). The
EM algorithm arrives at local optima of the data likelihood for the emission variance Γ and the
auto-covariance on the diagonal of A.

Figure 2 shows the estimates of η for the word ctfu (cracking the fuck up) in five metropolitan areas.
The strong dotted lines show the 95% confidence intervals of the Kalman smoother; each of 100

6



Transmission edge selection
• Simulated posterior samples of A matrix

• Which of the 39,600 non-diagonals (edges) are significantly non-zero?  
Multiple hypothesis testing
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Figure 3: Am,n estimates for all (m,n), showing intervals µm,n ± 3.12σm,n. Left: Both self-effects and

cross-region effects are shown (excluding two having z > 500). Right: only cross-region effects.

FFBS samples is shown as a light dotted line. The right panel shows the estimated term frequencies

with lines, and the empirical frequencies with circles. The term was used only in Cleveland (among

these cities) at the beginning of the dataset, but eventually became popular in Philadelphia, Pitts-

burgh, and Erie (Pennsylvania). The wider confidence intervals for Erie reflect greater uncertainty

due to the smaller overall counts for this city.

4.3 Estimating cross-region effects

The maximum-likelihood estimate for the system coefficients is ordinary least squares,

A =
�
ηT
1:T−1η1:T−1

�−1
ηT
2:Tη1:T−1 (8)

The regression includes a bias term. We experimented with ridge regression for regularization

(penalizing the squared Frobenius norm of A), comparing regularization coefficients by cross-

validation within the time series. We found that regularization can improve the likelihood on held-

out data when computing A for individual words, but when words are aggregated, regularization

yields no improvement.

Next, we compute confidence estimates for A. We compute A(k)
for each sampled sequence η(k)

,

summing over all words. We can then compute Monte Carlo-based confidence intervals around each

entry Am,n, by fitting a Gaussian to the samples: µm,n = 1
K

�K
k A(k)

m,n and σ2
m,n = 1

K

�K
k (A(k)

m,n−
µm,n)2. To identify coefficients that are very likely to be non-zero, we compute Wald tests using

z-scores zm,n = µm,n/σ2
m,n. We apply the Benjamini-Hochberg False Discovery Rate correction

for multiple hypothesis tests [34], computing a one-tailed z-score threshold z̄ such that the total

proportion of false positives will be less than .01. This test finds a z̄ such that

FDR = 0.01 =
E[#{that pass under null hypothesis}]

#{that pass empirically} =
200(199)(1− Φ(z̄))

#{zm,n > z̄} (9)

Coefficients that pass this threshold can be confidently considered to indicate cross-regional influ-

ence in the autoregressive model.

5 Analysis

We apply this method to the Twitter data described in Section 3. In practice, we initialize each ηi
to smoothed relative-frequency estimates, and run the EM-Kalman procedure for 100 steps or until

convergence. We then draw 100 samples of ηi from the FFBS smoother. These samples are used

to compute confidence intervals around the autoregression coefficients A. When aggregating across

all words, the total number of significant (m,n) interactions is 3544, out of 39,800 possible, with

z-score threshold of 3.12. Figure 3 visually depicts these estimates; the FDR of 0.01 indicates that

the blue points occur 100 times more often than they would by chance.

Figure 4 shows high-confidence, high-influence links among the 50 largest metropolitan statistical

areas in the United States. For more precise inspection, Figure 5 shows, for each city, all high-

7

• Bonferroni correction too conservative: 
controlling familywise error rate
P( >= 1 false positive)

• Benjamini-Hochberg: control the 
False Discovery Rate
E[ % false positive ] <= 0.01

yields 3544 edges
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Figure 4: Lexical influence network: high-confidence, high-influence links (z > 3.12, µ > 0.025). Left:
among all 50 largest MSAs. Right: subnetwork for the Eastern seaboard area. See also Figure 5, which uses

same colors for cities.

geo distance % White % Af. Am. % Hispanic % urban %renter log income

linked 10.5± 0.5 10.2± 0.4 8.45± 0.37 9.88± 0.64 9.55± 0.34 6.30± 0.24 0.181± 0.006
unlinked 20.8± 0.6 16.2± 0.5 16.3± 0.5 15.2± 0.8 12.0± 0.4 6.78± 0.25 0.201± 0.007

Table 2: Geographical distances and absolute demographic differences for linked and non-linked pairs of

MSAs. Confidence intervals are p < .01, two-tailed.

confidence influence links to and from all other cities (also called ego networks). The role of geo-

graphical proximity is apparent: there are dense connections within regions such as the northeast,

midwest, and west coast, and relatively few cross-country connections.

By analyzing the properties of pairs of cities with significant influence, we can identify the geo-

graphic and demographic drivers of linguistic influence. First, we consider the ways in which sim-
ilarity and proximity between regions causes them to share linguistic influence. Then we consider

the asymmetric properties that cause some regions to be linguistically influential.

5.1 Symmetric properties of linguistic influence

To assess symmetric properties of linguistic influence, we compare pairs of MSAs linked by non-

zero autoregressive coefficients, versus randomly-selected pairs of MSAs. Specifically, we compute

the empirical distribution over senders and receivers (how often each city fills each role), and we

sample pairs from these distributions. The baseline thus includes the same distribution of MSAs as

the experimental condition, but randomizes the associations. Even if our model were predisposed to

detect influence among certain types of MSAs (for example, large or dense cities), that would not

bias this analysis, since the aggregate makeup of the linked and non-linked pairs is identical.

Table 2 shows the similarities between pairs of cities that are linguistically linked (line 1) or selected

randomly (line 2). Cities indicated as linked by our model are more geographically proximal than

randomly-selected cities, and are more demographically similar on every measured dimension. All

effects are significant at p < 0.05; the percentage of renters just misses the threshold for p < 0.01.

Because demographic attributes correlate with each other and with geography, it is possible that

some of these homophily effects are spurious. To disentangle these factors, we perform a multiple

regression. We choose a classification framework, treating each linked city pair as a positive ex-

ample, and randomly selected non-linked pairs as negative examples. Logistic regression is used to

assign weights to each of several independent variables: product of populations [10], geographical

8
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New York, NY Los Angeles, CA Chicago, IL Dallas, TX Philadelphia, PA

Houston, TX Miami, FL Washington, DC Atlanta, GA Boston, MA−NH

Detroit, MI Phoenix, AZ San Francisco, CA Riverside, CA Seattle, WA

Minneapolis, MN San Diego, CA St. Louis, MO Tampa, FL Baltimore, MD

Denver, CO Pittsburgh, PA Portland, OR Cincinnati, OH Sacramento, CA

Cleveland, OH Orlando, FL San Antonio, TX Kansas City, MO Las Vegas, NV

San Jose, CA Columbus, OH Charlotte, NC Indianapolis, IN Austin, TX

Virginia Beach, VA Providence, RI Nashville, TN Milwaukee, WI Jacksonville, FL

Memphis, TN Louisville, KY Richmond, VA Oklahoma City, OK Hartford, CT

New Orleans, LA Birmingham, AL Salt Lake City, UT Raleigh, NC Buffalo, NY

Figure 5: Ego networks for each of the 50 largest MSAs. Unlike Figure 4, all incoming and outgoing links are

included (having z-score > 3.12). A blue link between cities indicates there is both an incoming and outgoing

edge; green indicates outgoing-only; orange indicates incoming-only. Maps are ordered by population size.

Official MSA names include up to three city names to describe the area; we truncate to the first.
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Figure 5: Ego networks for each of the 50 largest MSAs. Unlike Figure 4, all incoming and outgoing links are

included (having z-score > 3.12). A blue link between cities indicates there is both an incoming and outgoing

edge; green indicates outgoing-only; orange indicates incoming-only. Maps are ordered by population size.

Official MSA names include up to three city names to describe the area; we truncate to the first.
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Figure 4: Lexical influence network: high-confidence, high-influence links (z > 3.12, µ > 0.025). Left:
among all 50 largest MSAs. Right: subnetwork for the Eastern seaboard area. See also Figure 5, which uses

same colors for cities.

geo distance % White % Af. Am. % Hispanic % urban %renter log income

linked 10.5± 0.5 10.2± 0.4 8.45± 0.37 9.88± 0.64 9.55± 0.34 6.30± 0.24 0.181± 0.006
unlinked 20.8± 0.6 16.2± 0.5 16.3± 0.5 15.2± 0.8 12.0± 0.4 6.78± 0.25 0.201± 0.007

Table 2: Geographical distances and absolute demographic differences for linked and non-linked pairs of

MSAs. Confidence intervals are p < .01, two-tailed.

confidence influence links to and from all other cities (also called ego networks). The role of geo-

graphical proximity is apparent: there are dense connections within regions such as the northeast,

midwest, and west coast, and relatively few cross-country connections.

By analyzing the properties of pairs of cities with significant influence, we can identify the geo-

graphic and demographic drivers of linguistic influence. First, we consider the ways in which sim-
ilarity and proximity between regions causes them to share linguistic influence. Then we consider

the asymmetric properties that cause some regions to be linguistically influential.

5.1 Symmetric properties of linguistic influence

To assess symmetric properties of linguistic influence, we compare pairs of MSAs linked by non-

zero autoregressive coefficients, versus randomly-selected pairs of MSAs. Specifically, we compute

the empirical distribution over senders and receivers (how often each city fills each role), and we

sample pairs from these distributions. The baseline thus includes the same distribution of MSAs as

the experimental condition, but randomizes the associations. Even if our model were predisposed to

detect influence among certain types of MSAs (for example, large or dense cities), that would not

bias this analysis, since the aggregate makeup of the linked and non-linked pairs is identical.

Table 2 shows the similarities between pairs of cities that are linguistically linked (line 1) or selected

randomly (line 2). Cities indicated as linked by our model are more geographically proximal than

randomly-selected cities, and are more demographically similar on every measured dimension. All

effects are significant at p < 0.05; the percentage of renters just misses the threshold for p < 0.01.

Because demographic attributes correlate with each other and with geography, it is possible that

some of these homophily effects are spurious. To disentangle these factors, we perform a multiple

regression. We choose a classification framework, treating each linked city pair as a positive ex-

ample, and randomly selected non-linked pairs as negative examples. Logistic regression is used to

assign weights to each of several independent variables: product of populations [10], geographical

8

Table 3: Logistic regression to predict linked pairs of MSAs

(a) Logistic regression coefficients predicting influence links
between MSAs. Bold typeface indicates statistical signifi-
cance at p < .01.

estimate s.e. t-value
intercept -0.0601 0.0287 -2.10
product of populations 0.393 0.048 8.22
distance -0.870 0.033 -26.1
abs. diff. % White -0.214 0.040 -5.39
abs. diff. % Af. Am. -0.693 0.042 -16.7
abs. diff. % Hispanic -0.140 0.030 -4.63
abs. diff. % urban -0.170 0.030 -5.76
abs. diff. % renters -0.0314 0.0304 -1.04
abs. diff. log income 0.0458 0.0301 1.52

(b) Accuracy of predicting influence
links, with ablated feature sets.

feature set accuracy gap
all features 72.3
-population 71.6 0.7
-geography 67.6 4.7
-demographics 66.9 5.4

Log pop. % White % Af. Am % Hispanic % Urban % Renters Log income

difference 0.968 -0.0858 0.0703 0.0094 0.0612 0.0231 0.0546
s.e. 0.0543 0.0065 0.0063 0.0098 0.0054 0.0041 0.0113
z-score 17.8 -13.2 11.1 0.950 11.3 5.67 4.82

Table 4: Differences in demographic attributes between senders and receivers of lexical influence. Bold type-
face indicates statistical significance at p < .01.

proximity, and the absolute difference of each demographic feature. All features are standardized.
The resulting coefficients and confidence intervals are shown in Table 3(a). Product of popula-
tions, geographical proximity, and similar proportions of African Americans are the most clearly
important predictors. Even after accounting for geography and population size, language change
is significantly more likely to be propagated between regions that are demographically similar —
particularly with respect to race and ethnicity.

Finally, we consider the impact of removing features on the accuracy of classification for whether a
pair of MSAs are linguistically linked by our model. Table 3(b) shows the classification accuracy,
computed over five-fold cross-validation. Removing the population feature impairs accuracy to a
small extent; removing either of the other two feature sets makes accuracy noticeably worse.

5.2 Asymmetric properties of linguistic influence

Next we evaluate asymmetric properties of linguistic influence. The goal is to identify the features
that make metropolitan areas more likely to send rather than receive lexical influence. Places that
possess many of these characteristics are likely to have originated or at least popularized many of
the neologisms observed in social media text. We consider the characteristics of the 466 pairs of
MSAs in which influence is detected in only one direction.

Table 4 shows the average difference in population and demographic attributes between the sender
and receiver cities in each of the 466 asymmetric pairs. Senders have significantly higher popula-
tions, more African Americans, fewer Whites, more renters, greater income, and are more urban
(p < 0.01 in all cases). Because demographic attributes and population levels are correlated, we
again turn to logistic regression to try to identify the unique contributing factors. In this case, the
classification problem is to identify the sender in each asymmetric pair. As before, all features are
standardized. The feature weights from training on the full dataset are shown in Table 5. Only the
coefficients for population size and percentage of African Americans are statistically significant.
In 5-fold cross-validation, this classifier achieves 82% accuracy (population alone achieves 78%
accuracy; without the population feature, accuracy is 77%).

Log pop. % White % Af. Am % Hispanic % Urban % Renters Log income
weights 2.22 -0.246 1.08 0.0914 -0.129 -0.0133 0.225
s.e. 0.290 0.315 0.343 0.229 0.221 0.180 0.194
t-score 7.68 -0.78 3.15 0.40 -0.557 -0.0736 1.16

Table 5: Regression coefficients for predicting direction of influence. Bold typeface indicates statistical signif-
icance at p < .01.
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• Remember biases in sample: Twitter skews to 
minorities, though exact demographic 
composition of our sample is not known
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possess many of these characteristics are likely to have originated or at least popularized many of
the neologisms observed in social media text. We consider the characteristics of the 466 pairs of
MSAs in which influence is detected in only one direction.

Table 4 shows the average difference in population and demographic attributes between the sender
and receiver cities in each of the 466 asymmetric pairs. Senders have significantly higher popula-
tions, more African Americans, fewer Whites, more renters, greater income, and are more urban
(p < 0.01 in all cases). Because demographic attributes and population levels are correlated, we
again turn to logistic regression to try to identify the unique contributing factors. In this case, the
classification problem is to identify the sender in each asymmetric pair. As before, all features are
standardized. The feature weights from training on the full dataset are shown in Table 5. Only the
coefficients for population size and percentage of African Americans are statistically significant.
In 5-fold cross-validation, this classifier achieves 82% accuracy (population alone achieves 78%
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Tentative conclusions

• Strong roles for both geography and demographics

• But demographics remarkable, given metropolitan 
area-level aggregation

• Need neighborhood-level aggregation?

• Racial homophily most important?

• Note socioeconomic class difficult to assess from this 
Census data

• Issues with word independence assumption?

• e.g. bruh related to bro?
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