Social Text Data Analysis

Brendan O'Connor Machine Learning Department Carnegie Mellon University

Talk at UChicago Computational Social Science Workshop seminar

November 16, 2012

What can **statistical text analysis** tell us about **society**?

- Manual content analysis: analyze ideas, concepts, opinions etc. in text. Long and rich history (Krippendorff 2012) -- but very labor-intensive
- From manual to automated content analysis
 - Quantitative comparisons
 - Pattern recognition
 - Qualitative drilldowns
- Many emerging examples of automated text content analysis [Political science, media studies, economics, psychology, sociology of science, sociolinguistics, public health, history, literature...]
- Appropriating tools from natural language processing, information retrieval, data mining, machine learning as quantitative social science methodology

Text as measurement?: concepts

U.S. convention speeches' word frequencies, by party http://www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html

Text as measurement: events

Figure 2 Israel-Palestinian interactions, 1982-1992

Automatic event extraction from news reports (Schrodt 1993)

Taxonomy of text analysis methods

Taxonomy of text analysis methods

Data/domain assumptions

Can interpret text only through context

Data/domain assumptions

Can interpret text only through context

Data/domain assumptions

Can interpret text only through context

Data/domain assumptions

Detecting cultural phenomena in textual social media

Opinions and Time

Brendan O'Connor, Ramnath Balasubramanyan, Bryan Routledge, Noah Smith

Language and Geography

Jacob Eisenstein, Brendan O'Connor, Noah Smith, Eric Xing

Internet Censorship David Bamman, Brendan O'Connor, Noah Smith

Detecting cultural phenomena in textual social media

Opinions and Time

Brendan O'Connor, Ramnath Balasubramanyan, Bryan Routledge, Noah Smith

People in U.S.

STAN HONDA / AFP/Getty Images

People in U.S.

STAN HONDA / AFP/Getty Images

People in U.S.

STAN HONDA / AFP/Getty Images

GALLUP

Obama Job Approval

Poll Data

- Consumer confidence, 2008-2009
 - Index of Consumer Sentiment (Reuters/ Michigan)
 - Gallup Daily
- 2008 Presidential Elections
 - Aggregation, Pollster.com
- 2009 Presidential Job Approval
 - Gallup Daily

Which tweets correspond to which polls?

Poll Data

• Consumer confidence, 2008-2009

- Index of Consumer Sentiment (Reuters/ Michigan)
- Gallup Daily
- 2008 Presidential Elections
 - Aggregation, Pollster.com
- 2009 Presidential Job Approval
 - Gallup Daily

Which tweets correspond to which polls? Topic Keywords

Subset of Gardenhose public tweets over 2008-2009

"economy"
→ "jobs"
"job"

"obama" "mccain"

"obama"

Analyzed subsets of messages that contained manually selected topic keyword

Poll Data

- Consumer confidence, 2008-2009
 - Index of Consumer Sentiment (Reuters/ Michigan)
 - Gallup Daily
- 2008 Presidential Elections
 - Aggregation, Pollster.com
- 2009 Presidential Job Approval
 - Gallup Daily

Which tweets correspond to which polls? Topic Keywords

Subset of Gardenhose public tweets over 2008-2009

"economy" → "jobs" "job"

> "obama" "mccain"

"obama"

Sentiment Analysis

Subjectivity Clues lexicon from OpinionFinder (Wilson et al 2005)

sentiment_t(topic_word) = $\frac{p(\text{pos. word} \mid \text{topic word}, t)}{p(\text{neg. word} \mid \text{topic word}, t)}$

Analyzed subsets of messages that contained manually selected topic keyword

A note on the sentiment list

- Not well-suited for social media English
 - "sucks" ":)" ":("

(Top examples)

•	I /	
word	valence	<u>count</u>
will	positive	3934
bad	negative	3402
good	positive	2655
help	positive	1971

(Random examples)

word	valence	count
funny	positive	114
fantastic	positive	37
cornerstone	positive	2
slump	negative	85
bearish	negative	17
crackdown	negative	5

window = 1, r = 0.064

window = 2, r = 0.380

window = 3, r = 0.513

window = 4, r = 0.591

window = 5, r = 0.677

window = 15, r = 0.804

Which leads, poll or text?

- Cross-corr between
 - Sentiment score on day t
 - Poll day *t*+*L*
- sentiment("jobs") is leading indicator for poll

Keyword message selection

15-day windows, no lag
sentiment("jobs")r = +0.80
r = +0.07
sentiment("economy")r = -0.10

Look out for stemming *sentiment*("jobs" OR "job") r = +0.40

Presidential elections [doesn't work]

 2008 elections sen("obama"), sen("mccain") do not correlate to polls

Presidential elections [doesn't work] Presidential job approval [~works]

- 2008 elections sen("obama"), sen("mccain") do not correlate to polls
- 2009 job approval sen("obama") => r = 0.72 Looks easy: simple decline

election.twitter.com

Proprietary sentiment analyzer over Obama vs Romney name-containing tweets

http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf

The Twitter Political Index May 1, 2012 to July 30, 2012

election.twitter.com

Proprietary sentiment analyzer over Obama vs Romney name-containing tweets

http://about.topsy.com/wp-content/uploads/2012/08/Twindex-report1.pdf

Twitter Political Index: A Comparison to Gallup

with 30-day moving averages - August 1, 2010 - July 31, 2012

Axis range adjusted to center respective data set averages.

Twitter and Polls

- Preliminary results that sentiment analysis on Twitter data can give information similar to opinion polls
 - But, still not well-understood!
- Who is using Twitter?
 - Massive changes over time (2008 Twitter != 2012 Twitter)
 - News vs. opinion?
 - Other data sources might better distinguish?
- Better text analysis
 - Very wide linguistic variation on Twitter
 - Word sense ambiguity: "steve jobs"
 - Better data sources
- Suggestion for future work: analyze correlations to pre-existing surveys and other attitude measurements
- Not a replacement for polls, but seems potentially useful. Between ethnography and surveys?
- See also

"I Wanted to Predict Elections with Twitter and all I got was this Lousy Paper" -- A Balanced Survey on Election Prediction using Twitter Data Daniel Gayo-Avello, arXiv 2012

Taxonomy of text analysis methods

Detecting cultural phenomena in textual social media

Language and Geography

Jacob Eisenstein, Brendan O'Connor, Noah Smith, Eric Xing

 Languages exhibit variation, reflecting geography, status, race, gender, etc.

Searching for dialect in social media

• One approach: search for known variable alternations, e.g. you / yinz / yall

(Kurath 1949, ..., Boberg 2005)

- Known variables like "yinz" don't appear much
- Are there new variables we don't know about?

Data

- Mobile clients for Twitter allow encoding of GPS location
- Our corpus: 380K messages from 9500 authors in the USA (March 2010)
 - Informal and conversational
 - 25% of the most common words not in the dictionary
- More than half of messages mention another user

A partial taxonomy of Twitter messages

Official announcements

Business advertising

Links to blog and web content

Celebrity self-promotion

BritishMonarchy TheBritishMonarchy On 6 Jan: Changing the Guard at Buckingham Palace - Starts at approx 11am http://www.royal.gov.uk/G

17 hours ago

bigdogcoffee bigdogcoffee Back to normal hours beginning tomorrow......Monday-Friday 6am-10pm Sat/Sun 7:30am-10pm

2 Jan

crampell Catherine Rampell Casey B. Mulligan: Assessing the Housing Sector http://nyti.ms/hcUKK9

THE_REAL_SHAQ THE_REAL_SHAQ fill in da blank, my new years shaqalution is ______

Status messages

RT @_LusciousVee: **#EveryoneShouldKnow** Ima Finally Be 18 This Year ^.^

1.1.11 - britons and americans can agree on the date for once.

3 minutes ago

1 Jan

emax electronic max

happy binary day!

siddx3 Evelyn Santana

Personal conversation

xoxoJuicyCee CeeCee'
@fxknnCelly aha kayy goodnightt (:

http://nyti. 10 hours ago

29

Generative Text Models

- How to simultaneously discover dialect regions and the words that characterize them?
- Probabilistic generative models
 - a.k.a. directed graphical models
 - Examples for text:
 - Hidden Markov Model
 - Naive Bayes
 - Topic Models, e.g. Latent Dirichlet Allocation

Generative models in 30 seconds

• We hypothesize that text is the output of a stochastic process. For example:

Generative models in 30 seconds

- We only see the output of the generative process.
- Through statistical inference over large amounts of data, we make educated guesses about the hidden variables.

Taxonomy of text analysis methods

All of an author's tweets collapsed into one "document"

Author is assigned one location

Locations are Gaussian mixture over space $r\sim \vec{\pi}$

 $(lat, lon) \sim N(\vec{\mu}_r, \boldsymbol{\Sigma}_r)$

Model fitting: variational mean field (Blei and Lafferty 06; Penny 01) Author's words are admixture over regional topics $\theta \sim Dir(\vec{\alpha})$ $z \sim \vec{\theta}$ $w \sim \exp(\vec{\eta}_{zr})$ Topics are logistic-normal over words

> $\vec{\phi}_k \sim N(\vec{a}, b^2 \mathbf{I})$ $\vec{\eta}_{kj} \sim N(\vec{\phi}_k, s_k^2 \mathbf{I})$

Locations are Gaussian mixture over space

 $r \sim \vec{\pi}$ $(lat, lon) \sim N(\vec{\mu}_r, \Sigma_r)$

Regions blend: text and geography jointly determine region membership

Validation: location prediction

Median distance, kilometers

• <u>www.ark.cs.cmu.edu/GeoTwitter</u>

Analysis

Analysis

	"basketball"	"popular music"	"daily life"	"emoticons"	"chit chat"
	PISTONS KOBE LAKERS game DUKE NBA CAVS STUCKEY JETS KNICKS	album music beats artist video #LAKERS ITUNES tour produced vol	tonight shop weekend getting going chilling ready discount waiting iam	:) haha :d :(;) :p xd :/ hahaha hahah	lol smh jk yea wyd coo ima wassup somethin jp
Boston	CELTICS victory BOSTON CHARLOTTE				
N. California	THUNDER KINGS GIANTS pimp trees clap				
New York	NETS KNICKS				
Los Angeles	#KOBE #LAKERS AUSTIN				
Lake Erie	CAVS CLEVELAND OHIO BUCKS od COLUMBUS				

Analysis

	"basketball"	"popular music"	"daily life"	"emoticons"	"chit chat"
	PISTONS KOBE LAKERS game DUKE NBA CAVS STUCKEY JETS KNICKS	album music beats artist video #LAKERS ITUNES tour produced vol	tonight shop weekend getting going chilling ready discount waiting iam	:) haha :d :(;) :p xd :/ hahaha hahah	lol smh jk yea wyd coo ima wassup somethin jp
Boston	CELTICS victory BOSTON CHARLOTTE	playing daughter PEARL alive war comp	BOSTON	;p gna loveee	<i>ese</i> exam suttin sippin
N. California	THUNDER KINGS GIANTS pimp trees clap	SIMON dl mountain seee	6am OAKLAND	<i>pues</i> hella koo SAN fckn	hella flirt hut iono OAKLAND
New York	NETS KNICKS	BRONX	iam cab	oww	wasssup nm
Los Angeles	#KOBE #LAKERS AUSTIN	#LAKERS load HOLLYWOOD imm MICKEY TUPAC	omw tacos hr HOLLYWOOD	af <i>papi</i> raining th bomb coo HOLLYWOOD	wyd coo af <i>nada</i> tacos messin fasho bomb
Lake Erie	CAVS CLEVELAND OHIO BUCKS od COLUMBUS	premiere prod joint TORONTO onto designer CANADA village burr	stink CHIPOTLE tipsy	;d blvd BIEBER hve OHIO	foul WIZ salty excuses lames officer lastnight

Linguistic Diffusion

- Which groups or geographic regions influence others? Where do new linguistic trends start?
- How do geographic or demographic factors affect linguistic transmission?

 Work in progress: *Mapping the geographical diffusion of new words* <u>http://arxiv.org/abs/1210.5268</u> Eisenstein, O'Connor, Smith, Xing NIPS 2012 Workshop on Social Network and Social Media Analysis

How do linguistic innovations spread?

• Distance

- Wave and Gravity models: linguistic innovations spread throughout a person's life; likelihood of contact based on distance (Bailey 1973, Trudgill 1974)
- Cascade model: innovations travel from largest city to secondlargest, etc. (Labov 2003)
- Cultural factors
 - e.g. African-American influences on standard American English: cool, rip off, uptight

How to study language change?

- Small number of carefully chosen linguistic variables -- esp. phonology
- Variation over *apparent time*: compare people of different ages
- Complementary approach from social media data
 - Time of posting (over a few years)
 - Lexical variables
- Fit simple regression-based model to large amount of real data
 - Contrast: theoretical quantitative models (dynamical systems, Nash equilibria, Bayesian learners, agent-based simulations...)

Data

- 86 weeks (Dec 2009 to May 2011)
 - 44 million geotagged messages (500k authors)
 - Aggregated by week
- Assigned to 200 Metropolitan Statistical Areas; demographics from U.S. Census
 - Simple interpretability
- I0,000 most frequent words => 1,818 (used at least 5 times in one week within one MSA)

Diffusion of novel words

Figure 1: Change in popularity for three words: *bruh*, *af*, -__-. Blue circles indicate cities in which the probability of an author using the word in a week in the listed period is greater than 1% (2.5% for *bruh*).

- MSAs as nodes in diffusion network
- "Influence"/"Transmission" from *r* -> *s*: if words popular in region *r* later become popular in *s*. [Lead-lag notion of influence/transmission]
- Can't use simple cross-correlations: confounds for size of region, global events (e.g. TV shows, holidays), etc.
- Logistic binomial probability whether an author uses a word at a particular (region, time)
- "Influence" represented as linear dynamical system (latent vector autoregression)

• Model fitting with EM

- (30 million variables, takes a while)
- Fitting eta: Gaussian approximation to logistic-binom
- Kalman smoother to learn diag(A); non-diagonals from VAR fits to eta samples

Smoothing examples

Figure 2: Left: Monte Carlo and Kalman smoothed estimates of η for the word *ctfu* in five cities. Right: estimates of term frequency in each city. Circles show empirical frequencies.

Transmission edge selection

- Simulated posterior samples of A matrix
- Which of the 39,600 non-diagonals (edges) are significantly non-zero? Multiple hypothesis testing
- Bonferroni correction too conservative: controlling familywise error rate P(>= 1 false positive)
- Benjamini-Hochberg: control the False Discovery Rate E[% false positive] <= 0.01

$$FDR = 0.01 = \frac{\mathbb{E}[\#\{\text{that pass under null hypothesis}\}]}{\#\{\text{that pass empirically}\}} = \frac{200(199)(1 - \Phi(\bar{z}))}{\#\{z_{m,n} > \bar{z}\}}$$

yields 3544 edges

Transmission network

Figure 4: Lexical influence network: high-confidence, high-influence links ($z > 3.12, \mu > 0.025$). Left: among all 50 largest MSAs. Right: subnetwork for the Eastern seaboard area. See also Figure 5, which uses same colors for cities.

Transmission ego networks

Los Angeles, CA **New York, NY** Ò O \cap 0 0 0 \circ Ο 00 00 Chicago, IL **Dallas**, **TX** Ó Ø 0 Ο 0 0 Ο 0 0 0 0

How does distance matter?

Symmetric properties of transmission

	geo distance	% White	% Af. Am.	% Hispanic	% urban	%renter	log income
linked	10.5 ± 0.5	10.2 ± 0.4	8.45 ± 0.37	9.88 ± 0.64	9.55 ± 0.34	6.30 ± 0.24	0.181 ± 0.006
unlinked	20.8 ± 0.6	16.2 ± 0.5	16.3 ± 0.5	15.2 ± 0.8	12.0 ± 0.4	6.78 ± 0.25	0.201 ± 0.007

Table 2: Geographical distances and absolute demographic differences for linked and non-linked pairs of MSAs. Confidence intervals are p < .01, two-tailed.

(a) Logistic regression coefficients predicting influence links between MSAs. Bold typeface indicates statistical significance at p < .01.

abs. diff. log income

1			
	estimate	s.e.	<i>t</i> -value
intercept	-0.0601	0.0287	-2.10
product of populations	0.393	0.048	8.22
distance	-0.870	0.033	-26.1
abs. diff. % White	-0.214	0.040	-5.39
abs. diff. % Af. Am.	-0.693	0.042	-16.7
abs. diff. % Hispanic	-0.140	0.030	-4.63
abs. diff. % urban	-0.170	0.030	-5.76
abs. diff. % renters	-0.0314	0.0304	-1.04

0.0458

0.0301

(b) Accuracy of predicting influence links, with ablated feature sets.

feature set	accuracy	gap
all features	72.3	
-population	71.6	0.7
-geography	67.6	4.7
-demographics	66.9	5.4

1.52
Senders vs. Receivers

	Log pop.	% White	% Af. Am	% Hispanic	% Urban	% Renters	Log income
difference	0.968	-0.0858	0.0703	0.0094	0.0612	0.0231	0.0546
s.e.	0.0543	0.0065	0.0063	0.0098	0.0054	0.0041	0.0113
z-score	17.8	-13.2	11.1	0.950	11.3	5.67	4.82

Table 4: Differences in demographic attributes between senders and receivers of lexical influence. Bold type-face indicates statistical significance at p < .01.

	Log pop.	% White	% Af. Am	% Hispanic	% Urban	% Renters	Log income
weights	2.22	-0.246	1.08	0.0914	-0.129	-0.0133	0.225
s.e.	0.290	0.315	0.343	0.229	0.221	0.180	0.194
t-score	7.68	-0.78	3.15	0.40	-0.557	-0.0736	1.16

Table 5: Regression coefficients for predicting direction of influence. Bold typeface indicates statistical significance at p < .01.

 Remember biases in sample: Twitter skews to minorities, though exact demographic composition of our sample is not known

Tentative conclusions

- Strong roles for both geography and demographics
 - But demographics remarkable, given metropolitan area-level aggregation
 - Need neighborhood-level aggregation?
- Racial homophily most important?
 - Note socioeconomic class difficult to assess from this Census data
- Issues with word independence assumption?
 - e.g. bruh related to bro?

Taxonomy of text analysis methods

Taxonomy of text analysis methods

All papers, slides available at <u>http://brenocon.com</u> Feedback welcome!

Opinions and Time

Brendan O'Connor, Ramnath Balasubramanyan, Bryan Routledge, Noah Smith

Language and Geography

Jacob Eisenstein, Brendan O'Connor, Noah Smith, Eric Xing

